Случайный процесс, протекающий в некоторой системе называется Марковским случайным процессом, если он обладает следующим свойством: для каждого момента времени t0 вероятность любого состояния системы в будущем (при t > t0) зависит только от состояния системы в настоящем и не зависит от того, когда и каким образом система пришла в это состояние.
В марковском случайном процессе будущее развитие зависит только от настоящего состояния и не зависит от предыстории. Для марковских случайных процессов определяется вероятности нахождения системы в том или ином состоянии используя уравнения Колмогорова:
,где p(t) – вероятность попадания в какое-либо состояние
l - множество определенных коэффициентов
Для стационарного потока:
- базисная модель - интерфейсная модельМатематическая модель некоторой сложной системы строится как совокупность базисной модели и интерфейсной модели, что позволяет использовать одни и те же базисные модели для разных задач проектирования, осуществляя настройку на соответствующую конкретную задачу, посредством изменения только параметров интерфейсной модели.
Математическая модель сложной Q-схемы должна обеспечивать вычисление времени реакции на запрос и производительность системы.
Методика вывода уравнений Колмогорова
-интенсивность перехода
1. Найдем вероятность того, что в момент времени t система
находится в состоянии S1. Придадим t малое приращение Dt и
определим, что система в момент времени t+Dt находится в состоянии S1.
2. Найдем вероятность того, что система находится в состоянии S2:
3. Найдем вероятность того, что система находится в состоянии S3:
4. Найдем вероятность того, что система находится в состоянии S4:
В результате получаем систему уравнений Колмогорова:
Интегрирование данной системы даст искомые вероятности состояний, как функций времени. Начальные условия берутся в зависимости от того, какого было начальное состояние системы. Если при t=0 система находится в состоянии S1, то начальные условия будут p1=1, p2= p3= p4=0. Кроме этого, к системе добавляются условия нормировки:
Все уравнения строятся по определенному правилу:
1. В левой части каждого уравнения стоит производная вероятности состояния, а в правой части содержится столько членов, сколько стрелок связано с этим состоянием.
2. Если стрелка направлена «из» состояния, соответствующий член имеет знак “-“, если «в» состояние, то знак “+”.
3. Каждый член равен произведению плотности вероятности перехода (интенсивность), соответствующий данной стрелке, и вероятности того состояния, из которого выходит стрелка.
Пример.
Рассмотрим многоканальную СМО с отказами. Состояние системы характеризуется по числу занятых каналов, т.е. по числу заявок.
S0 – все каналы свободны
S1 – занят один канал, остальные свободны
Sk – занято k каналов, остальные свободны
Sn – заняты все n каналов.
l |
l |
l |
l |
l |
m |
2m |
3m |
km |
(k+1)m |
nm |