Хотя RTP может использоваться и для одноадресной передачи в реальном времени, его сила в поддержке многоадресной передачи. Для этого каждый блок данных RTP содержит идентификатор отправителя, указывающий, кто из участников генерирует данные. Блоки данных RTP содержат также отметку о времени, чтобы данные могли быть воспроизведены с правильными интервалами принимающей стороной.
Кроме того, RTP определяет формат полезной нагрузки передаваемых данных. С этим напрямую связана концепция синхронизации, за которую частично отвечает микшер - механизм трансляции RTP. Принимая потоки пакетов RTP от одного или более источников, он комбинирует их и посылает новый поток пакетов RTP одному или более получателям. Микшер может просто комбинировать данные, а также изменять их формат.
Пример приложения для микшера - комбинирование нескольких источников звука. Например, пусть часть систем данного аудиосеанса генерирует каждая свой собственный поток RTP. Большую часть времени только один источник активен, хотя время от времени одновременно "говорят" несколько источников.
Если новая система хочет принять участие в сеансе, но ее канал не имеет достаточной емкости для поддержки всех потоков RTP, то микшер получает все эти потоки, объединяет их в один и передает последний новому члену сеанса. Заголовок RTP, генерируемый микшером, включает идентификатор(-ы) отправителя(-ей), чьи данные присутствуют в пакете.
Более простое устройство создает один исходящий пакет RTP для каждого поступающего пакета RTP. Этот механизм, называемый транслятором, может изменить формат данных в пакете или использовать иной комплект низкоуровневых протоколов для передачи данных из одного домена в другой. Например, потенциальный получатель может оказаться не в состоянии обрабатывать высокоскоростной видеосигнал, используемый другими участниками сеанса. Транслятор конвертирует видео в формат более низкого качества, требующий не такой высокой скорости передачи данных.
Заголовки RTP.
TCP – это общепринятый в Internet’е протокол транспортного уровня. Как уже было сказано, у него нет возможности контролировать задержки при доставке пакетов. RTP обходит ограничения TCP за счет использования UDP в качестве транспортного уровня для видеоконференций и других сервисов реального времени.
Кадый пакет UDP получает, как часть потока реального времени, специальный заголовок с информацией о времени и порядковом номере. Эта информация позволяет принимающей стороне восстановить исходный порядок пакетов, синхронизировать звук, изображение и данные, а также исключить дублирование пакетов.
Первые 12 октетов заголовка состоят из следующих полей:
• поле версии (2 бита): текущая версия вторая;
• поле заполнения (1 бит): это поле сигнализирует о наличии заполняющих октетов в конце полезной нагрузки. (Заполнение применяется, когда приложение требует, чтобы размер полезной нагрузки был кратен, например, 32 битам.) В этом случае последний октет указывает число заполняющих октетов;
• поле расширения заголовка (1 бит): когда это поле задано, то за основным заголовком следует еще один дополнительный, используемый в экспериментальных расширениях RTP;
• поле числа отправителей (4 бита): это поле содержит число идентификаторов отправителей, чьи данные находятся в пакете, причем сами идентификаторы следуют за основным заголовком;
• поле маркера (1 бит): смысл бита маркера зависит от типа полезной нагрузки. Бит маркера используется обычно для указания границ потока данных. В случае видео он задает конец кадра. В случае голоса он задает начало речи после периода молчания;
• поле типа полезной нагрузки (7 бит): это поле идентифицирует тип полезной нагрузки и формат данных, включая сжатие и шифрование. В стационарном состоянии отправитель использует только один тип полезной нагрузки в течение сеанса, но он может его изменить в ответ на изменение условий, если об этом сигнализирует протокол управления передачей в реальном времени (Real-Time Transport Control Protocol);
• поле порядкового номера (16 бит): каждый источник начинает нумеровать пакеты с произвольного номера, увеличиваемого затем на единицу с каждым посланным пакетом данных RTP. Это позволяет обнаружить потерю пакетов и определить порядок пакетов с одинаковой отметкой о времени. Несколько последовательных пакетов могут иметь одну и ту же отметку о времени, если логически они порождены в один и тот же момент (например, пакеты, принадлежащие к одному и тому же видеокадру);
• поле отметки о времени (32 бита): здесь записывается момент времени, в который первый октет данных полезной нагрузки был создан. Единицы, в которых время указывается в этом поле, зависят от типа полезной нагрузки. Значение определяется по локальным часам отправителя;
• поле идентификатора источника синхронизации: генерируемое случайным образом число, уникальным образом идентифицирующее источник в течение сеанса.
За основным заголовком может следовать одно или более полей идентификаторов отправителей, чьи данные присутствуют в полезной нагрузке. Эти идентификаторы вставляются микшером.
Недостатки RTP.
RTP далеко не совершенен. Например, протокол никак не способен повлиять на задержку в сети, но он помогает сократить дрожание изображения и звука при воспроизведении при наличии задержек. Кроме того, хотя пакеты UDP получают порядковые номера, так что принимающая станция может установить факт потери пакетов, RTP не предпринимает никаких мер для восстановления потерянных пакетов.
Проблемы перегрузки сети.
Назначение любой сети состоит в доставке данных получателем с гарантированным качеством услуг, включающих пропускную способность, задержку и допустимый предел вариации задержки. С ростом числа пользователей и приложений обеспечить качество услуг становится все труднее.
Просто реагировать на перегрузку уже недостаточно. Необходим инструмент, с помощью которого перегрузок можно было бы избежать вообще, т. е. сделать так, чтобы приложения могли резервировать сетевые ресурсы в соответствии с требуемым качеством услуг.
Превентивные меры полезны как при одноадресной, так и при многоадресной передаче.
При одноадресной передаче два приложения договариваются о конкретном уровне качества услуг для данного сеанса. Если сеть сильно загружена, то она может оказаться не в состоянии предоставить услуги необходимого качества. В этом случае приложениям придется отложить сеанс до лучших времен или попробовать снизить требования к качеству услуг, если это возможно. Тогда маршрутизаторы на предполагаемом пути выделяют ресурсы, например место в очереди и часть емкости исходящей линии. Если маршрутизатор не имеет возможности выделить ресурсы вследствие ранее взятых на себя обязательств, то он извещает об этом приложение. В этом случае приложение может попытаться инициировать другой сеанс с меньшими требованиями к качеству услуг или перенести его на более поздний срок.
Многоадресная рассылка ставит гораздо более сложные задачи по резервированию ресурсов. Она ведет к генерации огромных объемов сетевого трафика в случае, например, таких приложений, как видео, или большой и рассредоточенной группы получателей.
Протокол резервирования ресурсов RSVP.
В основе RSVP лежат три концепции, касающиеся потоков данных: сеанс, спецификация потока и спецификация фильтра. Сеанс - это поток данных, идентифицируемый по адресату. ( Эта концепция отличается от концепции сеанса RTP, хотя сеансы RSVP и RTP могут иметь взаимооднозначное соответствие.) После резервирования маршрутизатором ресурсов для конкретного адресата он рассматривает это как начало сеанса и выделяет ресурсы на время этого сеанса.
Запрос на резервирование от конечной системы-получателя, называемый описателем потока, состоит из спецификаций потока и фильтра. Спецификация потока определяет требуемое качество услуг и используется узлом для задания параметров планировщика пакетов. Маршрутизатор передает пакеты с заданным набором предпочтений, опираясь на текущую спецификацию потока.
Спецификация фильтра определяет набор пакетов, под которые запрашиваются ресурсы. Вместе с сеансом она определяет набор пакетов (или поток), для которых требуемое качество услуг должно быть обеспечено. Любые другие пакеты, направляемые этому адресату, обрабатываются постольку, поскольку сеть в состоянии это сделать.
RSVP не определяет содержание спецификации потока, он просто передает запрос. Спецификация потока включает обычно класс услуг, Rspec (R означает резерв) и Tspec (Т означает трафик). Два других параметра представляют собой набор чисел. Параметр Rspec определяет требуемое качество услуг, а параметр Tspec описывает поток данных. Содержимое Rspec и Tspec прозрачно для RSVP.
Вообще, спецификация фильтра описывает произвольное подмножество пакетов одного сеанса (т. е. пакетов, адресат которых определяется данным сеансом). Например, спецификация фильтра может определять только конкретных отправителей или протоколы либо пакеты, поля протокольных заголовков которых совпадают с заданными.
Спецификация фильтра позволяет отобрать пакеты для применения к ним спецификации потока. Прошедшим фильтр пакетам гарантируется качество услуг, остальные доставляются по мере возможности.
Многоадресная группа: что делать с данными ?
Основная сложность RSVP связана с многоадресной рассылкой. Пример многоадресной конфигурации приведен на рисунке. Эта конфигурация состоит из четырех маршрутизаторов. Канал между двумя любыми маршрутизаторами, изображаемый линией, может представлять собой как прямой канал, так и подсеть. Три хоста - G1, G2 и G3 - входят в одну группу и получают дейтаграммы с соответствующим групповым адресом. Данные по этому адресу передаются двумя хостами - S1 и S2. Красная линия соответствует дереву маршрутизации для S1 и данной группы, а синия линия для S2 и данной группы. Линии со стрелками указывают направление передачи пакетов от S1 (красная) и от S2 (синяя).