Из зависимости видно, что функция γ(Y0) достигает максимума при Y0=0,81 радиан (46˚).
Таким образом, основные геометрические размеры зеркала рассчитаны.
Рассчитаем геометрические и электродинамические характеристики облучателя.
Расчёт сводится к определению геометрических размеров облучателя, при которых уменьшение амплитуды поля на краю раскрыва зеркала происходит до одной трети амплитуды поля в центре раскрыва, и диаграммы направленности облучателя.
Рупор пирамидальный
Диаграммы направленности рупорной антенны рассчитываются по формулам:
В Е плоскости (Рис 2.7.3 а)
а | б |
Рисунок 8.3 – ДН облучателя: а – в Е плоскости; б – в Н плоскости. |
Множители ap и bp в уравнениях диаграмм направленности – поперечные размеры рупора выбираются из условия спадания поля на краю раскрыва до одной третей по отношению к полю в центре раскрыва. В данном случае ap=5,15 см и bp=3,76 см.
Для оптимального рупора (наибольший КНД) продольные и поперечные размеры связаны между собой соотношениями:
Распределение поля в апертуре зеркала.
Расчёт распределения поля в апертуре зеркала осуществляется по следующим формулам:
Где F0(Ψ) - диаграмма направленности облучателя
Ψ0 – угол раскрыва
Ψ – текущий угол
Таким образом, поле в апертуре зеркала распределено по следующим законам:
в Е плоскости (рисунке 8.4 а)
а | б |
Рисунок 8.4 – Распределение поля в апертуре зеркала: а – в Е плоскости; б – в Н плоскости. |
Теперь рассчитаем пространственную диаграмму направленности и определим параметры параболической антенны.
где J1 и J2 – цилиндрические функции Бесселя первого и второго порядка;
Таким образом, пространственная ДН принимает вид в плоскости Е рисунок 8.5 а. и в плоскости Н рисунок 8.5 б.
Рисунок 8.5 б - ДН антенны в Н плоскости.
Таким образом, реальная ширина диаграммы направленности составляет: в горизонтальной плоскости 0,034 радиана или 1,97˚;
в вертикальной плоскости 1,54 радиана или 88,2˚;
что вполне удовлетворяет требованиям.
В вышеприведенных пунктах дипломного проекта были рассчитаны основные тактико-технические характеристики радиолокационной станции обзора водной поверхности речного шлюза.
Теперь учтем влияние метеорологических условий среды на работу радиолокационной станции, а точнее, их влияния на характеристики обнаружения.
На пути распространения зондирующего и отраженного сигнала могут быть такие метеообразования как дождь или туман.
Из рисунков 5.6 и 5.7 [12] находим коэффициенты поглощения энергии радиоволн в различных средах. Зная длину волны l=4 см, зададимся наихудшими условиями: сильный дождь (16 мм/ч), туман с видимостью 30м и так же учтем затухание в кислороде. Поглощение энергии радиоволн с данной длиной волны в парах воды несущественно, поэтому его можно не учитывать.
В итоге суммарный коэффициент поглощения равен:
Общее затухание энергии на пути распространения, равном 2км (так как учитывается распространение сигнала от передающей антенны до цели и от цели до приемной антенны), составит 0,41 дБ или 1,01 раза.
где РNr – мощность шумов на входе приемника.
Зная отношение сигнал/шум и необходимую вероятность правильного обнаружения, находим из графика рис 4.3 [12] вероятность ложной тревоги, Рлт=1,1·10-4, что практически совпадает со значением в задании и не оказывает существенного влияния на параметры обнаружения.
Тактико-технические характеристики спроектированной радиолокационной станции сведены в таблицу 2.8.1.
Таблица 9.1 – Тактико-технические характеристики РЛС
Параметр | Значение | |
Дальность действия, м | 1000 | |
Вероятность правильного обнаружения | 0,95 | |
Вероятность ложной тревоги | 1,1·10-4 | |
Мощность передатчика, мВт | 122 | |
Ширина диаграммы направленности в вертикальной плоскости, ˚ | 88 | |
Ширина диаграммы направленности в горизонталной плоскости, ˚ | 1,97 | |
Период обзора приемной антенны, с | 1 | |
Период обзора передающей антенны, с | 45 | |
Время обновления информации, с | 45 | |
Частота, ГГц | 7,5 | |
Раскрыв антенны в горизонтальной плоскости, м | 1,4 | |
Раскрыв антенны в вертикальной плоскости, м | 0,04 | |
Зона обзора по азимуту, ˚ | 90 | |
ЭПР целей, | 5 | |
Разрешение по угловой координате | 2 | |
Индикация цели | Яркостная отметка, с цифровыми данными о скорости |
Итак, спроектированная радиолокационная станция обнаружения надводных целей в речном шлюзе по своим параметрам удовлетворяет техническому заданию и выполняет возложенные на неё функции.
10 БИЗНЕС-ПЛАН
10.1 Сущность проекта.
Сущность проекта заключается в проектировании радиолокационной станции для обеспечения безопасности движения речного транспорта в шлюзовой камере. Для организации движения речного транспорта необходимо знать их расположение и характеристики движения. Но в речном шлюзе, представляющим собой узкий и глубокий канал, не всегда можно получить такую информацию с помощью лишь визуального наблюдения, как из-за характерных размеров шлюза, так и неблагоприятных метеорологических условий или времени суток. Можно было бы использовать видео наблюдение, но оно так же не дает полноценной оценки обстановки, а увеличение числа видеокамер ведет к большой трудоемкости в обслуживании и частым поломкам системы видеонаблюдения. В таком случае целесообразно применять радиолокацию.
Усть-Каменогорск является промышленным городом, располагающимся на реке Иртыш, и большое количество грузовых и пассажирских перевозок осуществляется по реке. То есть весь транспорт пользуется шлюзом для перехода из Усть-Каменогорского водохранилища в Иртыш.
10.2 Характеристика проекта
Проектирование производится для Усть-Каменогорской гидроэлектростанции, плотина которой имеет однокамерный шлюз длиной сто метров и шириной восемнадцать. Разность высот воды между водохранилищем и рекой составляет около сорока метров. шлюз однокамерный, а перепад уровней воды достаточно большой, что и приводит к трудностям слежения за происходящим при минимальном уровне воды в камере.