Смекни!
smekni.com

Расчет настроек автоматического регулятора (стр. 2 из 4)

3.3 Линейное сглаживание и график кривой разгона по основному каналу

табл. 3.3

1 0,0000 50,9500 30 14,5000 58,3333
2 0,5000 50,9500 31 15,0000 58,5667
3 1,0000 51,0000 32 15,5000 58,7667
4 1,5000 51,0500 33 16,0000 58,9667
5 2,0000 51,1167 34 16,5000 59,1333
6 2,5000 51,2667 35 17,0000 59,2500
7 3,0000 51,4500 36 17,5000 59,4000
8 3,5000 51,6667 37 18,0000 59,5333
9 4,0000 51,8500 38 18,5000 59,6667
10 4,5000 52,1333 39 19,0000 59,7500
11 5,0000 52,4500 40 19,5000 59,8667
12 5,5000 52,7833 41 20,0000 59,9833
13 6,0000 53,1500 42 20,5000 60,0833
14 6,5000 53,5167 43 21,0000 60,1500
15 7,0000 53,8833 44 21,5000 60,2167
16 7,5000 54,1667 45 22,0000 60,2833
17 8,0000 54,5333 46 22,5000 60,3500
18 8,5000 54,9167 47 23,0000 60,4167
19 9,0000 55,2833 48 23,5000 60,4833
20 9,5000 55,5667 49 24,0000 60,5500
21 10,0000 55,9167 50 25,0000 60,6000
22 10,5000 56,2667 51 25,5000 60,6500
23 11,0000 56,6000 52 26,0000 60,7000
24 11,5000 56,8333 53 27,0000 60,7500
25 12,0000 57,1333 54 27,5000 60,8000
26 12,5000 57,4167 55 30,0000 60,8500
27 13,0000 57,7000 56 30,5000 60,9000
28 13,5000 57,8833 57 36,0000 60,9500
29 14,0000 58,1167 58 36,5000 61,0000

4. Нормирование кривых разгона.

С помощью программы ASR в пункте нормировать последовательно производим нормирование сглаженных кривых и упорядочиваем время начиная с 0,0000, с шагом 0,5 для того чтобы привести полученную динамическую характеристику к единичному виду.

4.1 Нормированная кривая разгона для внешнего контура

табл.4.1

1 0,0000 0,0000 22 10,5000 0,8201
2 0,5000 0,0175 23 11,0000 0,8401
3 1,0000 0,0508 24 11,5000 0,8585
4 1,5000 0,0924 25 12,0000 0,8718
5 2,0000 0,1407 26 12,5000 0,8868
6 2,5000 0,1807 27 13,0000 0,9001
7 3,0000 0,2356 28 13,5000 0,9117
8 3,5000 0,2923 29 14,0000 0,9184
9 4,0000 0,3489 30 14,5000 0,9284
10 4,5000 0,3905 31 15,0000 0,9367
11 5,0000 0,4421 32 15,5000 0,9450
12 5,5000 0,4921 33 16,0000 0,9500
13 6,0000 0,5404 34 16,5000 0,9567
14 6,5000 0,5754 35 17,0000 0,9634
15 7,0000 0,6170 36 18,5000 0,9700
16 7,5000 0,6553 37 18,0000 0,9750
17 8,0000 0,6903 38 18,5000 0,9800
18 8,5000 0,7152 39 19,0000 0,9850
19 9,0000 0,7452 40 19,5000 0,9900
20 9,5000 0,7735 41 20,0000 0,9950
21 10,0000 0,7985 42 20,5000 1,0000

4.2 Нормированная кривая разгона для внутреннего контура

табл.4.2

1 0,0000 0,0000 30 14,5000 0,7973
2 0,5000 0,0150 31 15,0000 0,8090
3 1,0000 0,0299 32 15,5000 0,8239
4 1,5000 0,0515 33 16,0000 0,8372
5 2,0000 0,0814 34 16,5000 0,8505
6 2,5000 0,1146 35 17,0000 0,8588
7 3,0000 0,1478 36 17,5000 0,8688
8 3,5000 0,1744 37 18,0000 0,8787
9 4,0000 0,2126 38 18,5000 0,8887
10 4,5000 0,2508 39 19,0000 0,8970
11 5,0000 0,2890 40 19,5000 0,9053
12 5,5000 0,3173 41 20,0000 0,9136
13 6,0000 0,3555 42 20,5000 0,9203
14 6,5000 0,3937 43 21,0000 0,9252
15 7,0000 0,4302 44 21,5000 0,9302
16 7,5000 0,4568 45 22,0000 0,9352
17 8,0000 0,4900 46 22,5000 0,9402
18 8,5000 0,5233 47 23,0000 0,9452
19 9,0000 0,5548 48 23,5000 0,9502
20 9,5000 0,5781 49 24,0000 0,9551
21 10,0000 0,6063 50 24,5000 0,9601
22 10,5000 0,6329 51 25,0000 0,9651
23 11,0000 0,6578 52 25,5000 0,9701
24 11,5000 0,6761 53 26,0000 0,9751
25 12,0000 0,6993 54 26,5000 0,9801
26 12,5000 0,7209 55 27,0000 0,9850
27 13,0000 0,7409 56 27,5000 0,9900
28 13,5000 0,7608 57 28,0000 0,9950
29 14,0000 0,7791 58 28,5000 1,0000

4.3 Нормированная кривая разгона по основному каналу

табл. 4.3

1 0,0000 0,0000 30 14,5000 0,7579
2 0,5000 0,0050 31 15,0000 0,7779
3 1,0000 0,0100 32 15,5000 0,7977
4 1,5000 0,0166 33 16,0000 0,8143
5 2,0000 0,0315 34 16,5000 0,8259
6 2,5000 0,0498 35 17,0000 0,8408
7 3,0000 0,0713 36 17,5000 0,8541
8 3,5000 0,0896 37 18,0000 0,8673
9 4,0000 0,1177 38 18,5000 0,8756
10 4,5000 0,1493 39 19,0000 0,8872
11 5,0000 0,1824 40 19,5000 0,8988
12 5,5000 0,2189 41 20,0000 0,9088
13 6,0000 0,2554 42 20,5000 0,9154
14 6,5000 0,2919 43 21,0000 0,9221
15 7,0000 0,3201 44 21,5000 0,9287
16 7,5000 0,3566 45 22,0000 0,9353
17 8,0000 0,3947 46 22,5000 0,9420
18 8,5000 0,4312 47 23,0000 0,9486
19 9,0000 0,4594 48 23,5000 0,9552
20 9,5000 0,4942 49 24,0000 0,9602
21 10,0000 0,5290 50 24,5000 0,9652
22 10,5000 0,5622 51 25,5000 0,9701
23 11,0000 0,5857 52 25,5000 0,9751
24 11,5000 0,6153 53 26,0000 0,9801
25 12,0000 0,6434 54 26,5000 0,9851
26 12,5000 0,6716 55 27,0000 0,9900
27 13,0000 0,6899 56 27,5000 0,9950
28 13,5000 0,7131 57 28,0000 1,0000
29 14,0000 0,7347

5. Аппроксимация методом Симою.

С помощью программы ASR в пункту аппроксимации последовательно считаем площади каждой из кривой разгона для последующего получения уравнения передаточной функции.

Для кривой разгона по внешнему контуру для объекта второго порядка получаем следующие данные:

Значения площадей:

F1= 6.5614

F2= 11.4658

F3= -4.5969

F4= -1.1636

F5= 44.0285

F6= -120.0300

Ограничимся второй площадью. F1<F2, а F3 отрицательная. Следовательно для определения передаточной функции необходимо решить систему уравнений:

a1 = F1 + b1

a2 = F2 + b2 + b1 F2

a3 = F3 + b3 + b2 F1 + b1 F2

a1 = 6.5614 + b1

a2 = 11.4658 + b1 6.5614

0 = - 4.5969 + b1 11.4658

Решив систему получаем : b1 = 0.4

a1 = 6.9614

a2 = 14.0904

Тогда передаточная функция объекта второго порядка по внешнему контуру имеет вид:

0.4 s

W(s)=-----------------------------

2

14.0904 s + 6.9614 s + 1

Для кривой разгона по внутреннему контуру для объекта второго порядка получаем следующие данные:

Значения площадей:

F1= 9.5539

F2= 24.2986

F3= -16.7348

F4= -14.7318

F5= 329.7583

F6= -1179.3989

Для определения передаточной функции решаем систему, так как F3<0.

a1 = 9.5539 + b1

a2 = 24.2986 + 9.5539 b2

0 = -16.7348 + b1 24.2986

Решив систему получаем : b1 = 0.6887

a1 = 10.2426

a2 = 30.8783

Тогда передаточная функция объекта второго порядка по внутреннему контуру имеет вид:

0.6887 s + 1

W(s) = -----------------------------

2

30.8783s + 10.2426 s + 1

Для кривой разгона по заданию для объкта третьего порядка с запаздыванием получаем следующие данные:

Значения площадей:

F1= 10.6679

F2= 38.1160

F3= 30.4228

F4= -46.5445

F5= 168.8606

F6= -33.3020

Так как F3<F2 и положительна, то ограничиваемся второй площадью и передаточная объекта третьего порядка по управлению имеет вид:

1

W(s) =-------------------------------

2

38.1160 s + 10.6679 s + 1

6. Проверка аппроксимации методом Рунге - Кутта.

В программе ASR в пункте передаточная функция задаем полученные передаточные функции. И затем строим графики экспериментальной и аналитической кривых разгона (по полученной передаточной функции).