Смекни!
smekni.com

Расчет показателей надежности состава ЗИП погрешности электронных средств (стр. 1 из 2)

Контрольная работа

«Расчет показателей надежности, состава ЗИП, погрешности электронных средств»

Павловский М.И.


1.Расчет показателей надежности

Для расчета показателей надежности выбрана схема зарядного устройства на силовом инверторе из журнала «Радиолюбитель» №08 за 2009 год.

Таблица 1 - Определение величины интенсивности отказов

Наименование элемента Обозначение по схеме Количество nj Номинальная интенсивность отказов лj0, 10-6 ч-1 Режим работы Поправочный коэффициент бj Значение njj0j
t kн
Аккумулятор GB1 1 0,01 45 1 2,4 0,024
Амперметр PA1 1 0,01 45 0,5 0,2 0,002
Аналоговый таймер DA1 1 0,075 45 1 2,4 0,18
Выключатель SA1 1 0,07 45 0,8 1,8 0,126
Выпрямитель VD6 1 0,2 45 0,9 0,91 0,182
Диоды VD1-VD5 5 0,2 45 0,7 0,76 0,76
Дроссель T2 1 0,02 45 0,9 2,4 0,048
Конденсаторы C1, C7 2 0,035 45 0,5 0,64 0,044
Конденсаторы C2, C3 2 0,035 45 0,4 0,9 0,063
Конденсаторы C4, C5 2 0,035 45 0,6 0,9 0,063
Конденсаторы C6, C8-C13 7 0,035 45 0,7 1,24 0,303
Оптопара DA2 1 0,075 45 1 2,4 0,18
Предохранители FU1, FU2 2 0,5 45 0,6 0,76 0,76
Резисторы R15 1 0,071 45 0,4 0,51 0,036
Резисторы R3, R5, R6 3 0,071 45 0,2 0,33 0,07
Резисторы R2, R8, R12, R13 4 0,071 45 0,5 0,6 0,17
Резисторы R1, R4, R7, R9-R11, R14, R16 8 0,071 45 0,3 0,42 0,238
Светодиод HL1 1 0,2 45 0,7 0,76 0,152
Стабилизатор напряжения DA3 1 1 45 1 2,4 2,4
Терморезисторы RK1, RK2 2 0,2 45 0,4 0,51 0,204
Транзисторы VT1, VT2 2 0,5 45 0,8 1,22 1,22
Трансформатор T1 1 1,09 45 0,9 2,4 2,616

Выберем поправочные коэффициенты в зависимости от условий эксплуатации устройства (рис. 1).

k1=1, k2=2.5, k3=1;

Рис. 1


Интенсивность отказов изделия:

λ=2.461*10-5 ч-1;

Определяем среднее время безотказной работы Tm:

Tm = 40633.64 ч.

Построим график вероятности безотказной работы P(t) = exp(-λt) рис. 2.

Рис. 2

P(Tm) = 0.37;


2.Расчет комплекса одиночного ЗИП

Таблица 2 - Определение состава комплекта ЗИП

Наименование элемента Обозначение по схеме Кол-во nj Номинальная интенсивность отказов лj0, 10-6 ч-1 Среднее число отказов mi Необходимое число ЗИП Фактическая вероятность необеспечения ЗИП гi
Аккумулятор GB1 1 0,01 0,0004 0 0,0006
Амперметр PA1 1 0,01 0,0004 0 0,0006
Аналоговый таймер DA1 1 0,075 0,0030 1 0,0006
Выключатель SA1 1 0,07 0,0028 1 0,0006
Выпрямитель VD6 1 0,2 0,0081 1 0,0006
Диоды VD1-VD5 5 0,2 0,0406 1 0,0006
Дроссель T2 1 0,02 0,0008 1 0,0006
Конденсатор C1 1 0,035 0,0014 1 0,0006
Конденсатор C10 1 0,035 0,0014 1 0,0006
Конденсатор C11 1 0,035 0,0014 1 0,0006
Конденсатор C12 1 0,035 0,0014 1 0,0006
Конденсатор C13 1 0,035 0,0014 1 0,0006
Конденсатор C2 1 0,035 0,0014 1 0,0006
Конденсатор C3 1 0,035 0,0014 1 0,0006
Конденсатор C6 1 0,035 0,0014 1 0,0006
Конденсатор C7 1 0,035 0,0014 1 0,0006
Конденсаторы C4, C5 2 0,035 0,0028 1 0,0006
Конденсаторы C8, C9 2 0,035 0,0028 1 0,0006
Оптопара DA2 1 0,075 0,0030 1 0,0006
Предохранитель FU1 1 0,5 0,0203 1 0,0006
Предохранитель FU2 1 0,5 0,0203 1 0,0006
Резистор R1 1 0,071 0,0029 1 0,0006
Резистор R11 1 0,071 0,0029 1 0,0006
Резистор R15 1 0,071 0,0029 1 0,0006
Резистор R16 1 0,071 0,0029 1 0,0006
Резистор R3 1 0,071 0,0029 1 0,0006
Резисторы R12, R13 2 0,071 0,0058 1 0,0006
Резисторы R2, R8 2 0,071 0,0058 1 0,0006
Резисторы R5, R6 2 0,071 0,0058 1 0,0006
Резисторы R7, R14 2 0,071 0,0058 1 0,0006
Резисторы R4, R9, R10 3 0,071 0,0087 1 0,0006
Светодиод HL1 1 0,2 0,0081 1 0,0006
Стабилизатор напряжения DA3 1 1 0,0406 1 0,0006
Терморезистор RK1 1 0,2 0,0081 1 0,0006
Терморезистор RK2 1 0,2 0,0081 1 0,0006
Транзисторы VT1, VT2 2 0,5 0,0406 1 0,0006
Трансформатор T1 1 1,09 0,0443 1 0,0006

Рассчитываем усредненную вероятность необеспечения ЗИП на одну группу сменных элементов:

α=0.96;

γ ≈ 0.0011;

Исходя из полученных данных, рассчитаем значение фактической вероятности обеспечения ЗИП:

αф = 0.9778 > α

3. Расчет погрешности

Схема функционального узла (рис. 3):


Рис. 3

Параметры элементов:

R1, кОм R2, кОм R3, кОм TKR1, оС-1 TKR2, оС-1 TKR3, оС-1 KCR1, час-1 KCR2, час-1 KCR3, час-1
15±20% 12±10% 10±10% (5±2)10-3 (4±1)10-3 (3±1)10-3 (6±2)10-5 (4±1)10-5 (5±1)10-5

Исходя из предложенной схемы, получим уравнение зависимости модуля коэффициента передачи от схемных параметров:

Рассчитываем коэффициенты влияния всех параметров по формуле:


Значения коэффициентов влияния:

Параметр R1 R2 R3
Коэф. влияния 2/15 2/3 1/5

Рассчитываем среднее значение производственной погрешности Ei и величину половины допуска δi:

E1=0%, E2=0%, E3=0%;

δ1=20%, δ2=10%, δ3=10%;

Рассчитаем значение середины поля рассеивания производственной погрешности:

Eyпр =2/15*0+2/3*0+1/5*0 = 0;

Значение половины поля рассеивания lyпр производственной погрешности:

lyпр = ((2/15)2*202+(2/3)2*102+(1/5)2*102)1/2≈7.45%;

Параметр Eyпр lyпр
Значение 0 7,45%

Рассчитаем характеристики температурной погрешности:


E(TKR1)=0%, E(TKR2)=0%, E(TKR3)=0%;

δ(TKR1)=40%, δ(TKR2)=25%, δ(TKR3)=33%;

Среднее значение E(TKY) температурного коэффициента (ТК) выходного параметра и величина половины поля рассеивания l(TKY):

E(TKY) = 2/15*0+2/3*0+1/5*0 = 0%;

l(TKY) = ((2/15)2*402+(2/3)2*252+(1/5)2*332)1/2≈18.7%;

Среднее значение Eyt и величина половины поля рассеивания lyt температурной погрешности выходного параметра:

Eyt = Δt* E(TKY);

t1=-15oC, Eyt1 = (-15-20)*0=0;

t2=35oC, Eyt2 = (35-20)*0=0;

lyt = |Δt|* l(TKY) ;

t1=-15oC, lyt1 = | (-15-20) |*18.7=35*0.187=6.545 oC;

t2=35oC, lyt2 = | (35-20) |*18.7=15*0.187=2.805 oC;

Температура/Погрешности Eyt, oC lyt, oC
t1=-15oC 0 6.545
t2=35oC 0 2.805

Рассчитаем характеристики погрешности старения: