Смекни!
smekni.com

Разработка методов мажоритарного декодирования с улучшенными вероятностно-временными характеристиками (стр. 7 из 9)

Те же цифровые коды и по той же причине не корректируют при приеме 13-й посылки. Поэтому в регистры перезапишутся цифровые коды

В этом случае

= М = 7,
и результат мажоритарной обработки будет:

Реализация известных способов для рассмотренных методов потребовала бы 12

элементов памяти, т.е. сложность этого устройства оказалась бы в четыре раза большей. Чрезмерная сложность и ограничивала до настоящего времени применение указанных устройств в адаптивных системах связи.

5.3 Мажоритарное декодирование избыточных (n, к) – кодов с повторением

Данный метод относится к комбинированным методам защиты информации от ошибок, в которых сочетаются исправление части ошибок посредством мажоритарной обработки (2m– 1) повторений с последующей проверкой полученного результата на наличие или отсутствие ошибок по контрольным проверкам избыточного (n, k) – кода.

Вероятностные характеристики метода. Если используется трехкратное повторение комбинаций избыточного (n, k) – кода, для которого

– кратность гарантийно обнаруживаемых ошибок, то после мажоритарной обработки будем иметь

.

Вероятность необнаружения ошибок в этом случае

(32)

или

(33)

где (32) – приближенное выражение.

Потери информации при этом оцениваются по формуле

. (34)

В тех случаях, когда мажоритарной обработке подвергается (2m– 1) повторений,

может быть получено из следующего приближенного выражения:

.(35)

Рис. 5

Характеристики метода для канала с группирующимися ошибками. Из рис. 5 следует, что к необнаруживаемым ошибкам относятся ошибки, содержащие t (t= 0,1…,

) искажений типа единицы, j (j= 0,1,2,…,
-t) искажений типа двойки при t + j<
и i искажений типа тройки (i =
+1-j,
+2-j,…, n-t-j). Отметим, что
; в этом случае число необнаруживаемых ошибок определенной кратности

а общее число ошибок данной кратности –

Предполагая все ошибки равновероятными и зная суммарную вероятность этих ошибок P[(t + 2j + 3i), Зn], можно определить вероятность необнаруженных ошибок рассматриваемой кратности

Суммируя

по всем значениям t, j и i, получим выражение для определения полной вероятности необнаружения ошибок:

(36)

где

– коэффициент, учитывающий обнаружение ошибок более высокой кратности, чем
.

В определенных случаях можно уменьшить вероятность необнаруженных ошибок соответствующим выбором верхнего предела для переменных t и j, если независимо от результата контрольных проверок избыточного кода браковать информацию в случаях, когда число несовпадений (искажения типа единицы и двойки) в одноименных элементах превысит некоторый порог

. Не все составляющие выражения (36) имеют одинаковый вес. Некоторые из них убывают очень быстро. Это позволяет использовать приближенную формулу:

(37)

Считая, что потери информации обусловливаются неисправляемыми ошибками, последние можно оценить при помощи выражения (см. п. 5.1). В том случае, когда число несовпадений ограничивается параметром

необходимо в выражении (см. п. 5.1) в качестве верхнего предела использовать
. Потери информации при этом несколько возрастают.

5.4 Поэтапная обработка кодов с повторением

В [5, 56] рассматривается способ передачи и приема поэтапно закодированных сообщений. Использование этого способа для кодов с повторением позволяет наилучшим образом использовать вводимую избыточность, обеспечивая наибольшую верность без снижения оперативности управления и увеличения потерь информации.

Сравнительный анализ алгоритмов декодирования кодов c повторением. В соответствии с первым алгоритмом прием посылок и декодирование с обнаружением ошибок осуществляется до тех пор, пока в очередном сообщении не будут обнаружены ошибки. В этом случае достоверность определяется как функция:

а оперативность управления как

, (38)

где V – скорость модуляции. Следовательно, имеет место высокая оперативность и низкая достоверность, поскольку для повышения достоверности не используется вся вводимая избыточность.

В соответствии со вторым алгоритмом декодирования осуществляют

посылок, мажоритарную обработку по критерию большинства и декодирование с обнаружением ошибок результата мажоритарной обработки. В данном случае достоверность определяется как функция:

причем
<<
.

Однако оперативность управления резко снижается и характеризуется выражением

т.е.

Алгоритм поэтапного декодирования кодов с повторением сочетает преимущества как первого, так и второго из рассмотренных выше алгоритмов. В соответствии с этим алгоритмом осуществляется прием и декодирование повторных посылок сообщения и первое правильно декодированное сообщение в качестве предварительного решения выдается для начала исполнения. Этим обеспечивается высокая оперативность управления. Повторные посылки сообщения накапливаются, обрабатываются мажоритарным способом и декодируются. Декодированное сообщение сравнивается с предварительным решением. При их совпадении предварительное решение не изменяется. При несовпадении предварительное решение бракуется и в качестве окончательного решения выдается сообщение, декодированное после накопления и мажоритарной обработки. Этот метод характеризуется высокой оперативностью управления (

) и большим значением достоверности передаваемой информации (
). Возможны различные модификации разработанного алгоритма поэтапного декодирования, обусловленные заданными требованиями по достоверности доведения информации и оперативности управления. Определим области целесообразного применения тех или других алгоритмов декодирования кодов с повторением.

Области применения алгоритмов декодирования кодов с повторением. Решение поставленной задачи выполняется

Рис. 6.

в предположении использования каналов связи с независимыми ошибками, характеризуемых одним параметром–вероятностью искажения одного элемента комбинации

.

Алгоритм декодирования, в соответствии с которым первая правильно декодированная посылка сообщения выдается получателю, обеспечивает следующие характеристики.