Те же цифровые коды и по той же причине не корректируют при приеме 13-й посылки. Поэтому в регистры перезапишутся цифровые коды
В этом случае
= М = 7, и результат мажоритарной обработки будет:Реализация известных способов для рассмотренных методов потребовала бы 12
элементов памяти, т.е. сложность этого устройства оказалась бы в четыре раза большей. Чрезмерная сложность и ограничивала до настоящего времени применение указанных устройств в адаптивных системах связи.Данный метод относится к комбинированным методам защиты информации от ошибок, в которых сочетаются исправление части ошибок посредством мажоритарной обработки (2m– 1) повторений с последующей проверкой полученного результата на наличие или отсутствие ошибок по контрольным проверкам избыточного (n, k) – кода.
Вероятностные характеристики метода. Если используется трехкратное повторение комбинаций избыточного (n, k) – кода, для которого
– кратность гарантийно обнаруживаемых ошибок, то после мажоритарной обработки будем иметь .Вероятность необнаружения ошибок в этом случае
(32)или
(33)где (32) – приближенное выражение.
Потери информации при этом оцениваются по формуле
. (34)В тех случаях, когда мажоритарной обработке подвергается (2m– 1) повторений,
может быть получено из следующего приближенного выражения: .(35)Рис. 5
Характеристики метода для канала с группирующимися ошибками. Из рис. 5 следует, что к необнаруживаемым ошибкам относятся ошибки, содержащие t (t= 0,1…,
) искажений типа единицы, j (j= 0,1,2,…, -t) искажений типа двойки при t + j< и i искажений типа тройки (i = +1-j, +2-j,…, n-t-j). Отметим, что ; в этом случае число необнаруживаемых ошибок определенной кратностиа общее число ошибок данной кратности –
Предполагая все ошибки равновероятными и зная суммарную вероятность этих ошибок P[(t + 2j + 3i), Зn], можно определить вероятность необнаруженных ошибок рассматриваемой кратности
Суммируя
по всем значениям t, j и i, получим выражение для определения полной вероятности необнаружения ошибок: (36)где
– коэффициент, учитывающий обнаружение ошибок более высокой кратности, чем .В определенных случаях можно уменьшить вероятность необнаруженных ошибок соответствующим выбором верхнего предела для переменных t и j, если независимо от результата контрольных проверок избыточного кода браковать информацию в случаях, когда число несовпадений (искажения типа единицы и двойки) в одноименных элементах превысит некоторый порог
. Не все составляющие выражения (36) имеют одинаковый вес. Некоторые из них убывают очень быстро. Это позволяет использовать приближенную формулу:Считая, что потери информации обусловливаются неисправляемыми ошибками, последние можно оценить при помощи выражения (см. п. 5.1). В том случае, когда число несовпадений ограничивается параметром
необходимо в выражении (см. п. 5.1) в качестве верхнего предела использовать . Потери информации при этом несколько возрастают.В [5, 56] рассматривается способ передачи и приема поэтапно закодированных сообщений. Использование этого способа для кодов с повторением позволяет наилучшим образом использовать вводимую избыточность, обеспечивая наибольшую верность без снижения оперативности управления и увеличения потерь информации.
Сравнительный анализ алгоритмов декодирования кодов c повторением. В соответствии с первым алгоритмом прием посылок и декодирование с обнаружением ошибок осуществляется до тех пор, пока в очередном сообщении не будут обнаружены ошибки. В этом случае достоверность определяется как функция:
а оперативность управления как
, (38)где V – скорость модуляции. Следовательно, имеет место высокая оперативность и низкая достоверность, поскольку для повышения достоверности не используется вся вводимая избыточность.
В соответствии со вторым алгоритмом декодирования осуществляют
посылок, мажоритарную обработку по критерию большинства и декодирование с обнаружением ошибок результата мажоритарной обработки. В данном случае достоверность определяется как функция: причем << .Однако оперативность управления резко снижается и характеризуется выражением
т.е.
Алгоритм поэтапного декодирования кодов с повторением сочетает преимущества как первого, так и второго из рассмотренных выше алгоритмов. В соответствии с этим алгоритмом осуществляется прием и декодирование повторных посылок сообщения и первое правильно декодированное сообщение в качестве предварительного решения выдается для начала исполнения. Этим обеспечивается высокая оперативность управления. Повторные посылки сообщения накапливаются, обрабатываются мажоритарным способом и декодируются. Декодированное сообщение сравнивается с предварительным решением. При их совпадении предварительное решение не изменяется. При несовпадении предварительное решение бракуется и в качестве окончательного решения выдается сообщение, декодированное после накопления и мажоритарной обработки. Этот метод характеризуется высокой оперативностью управления (
) и большим значением достоверности передаваемой информации ( ). Возможны различные модификации разработанного алгоритма поэтапного декодирования, обусловленные заданными требованиями по достоверности доведения информации и оперативности управления. Определим области целесообразного применения тех или других алгоритмов декодирования кодов с повторением.Области применения алгоритмов декодирования кодов с повторением. Решение поставленной задачи выполняется
Рис. 6.
в предположении использования каналов связи с независимыми ошибками, характеризуемых одним параметром–вероятностью искажения одного элемента комбинации
.Алгоритм декодирования, в соответствии с которым первая правильно декодированная посылка сообщения выдается получателю, обеспечивает следующие характеристики.