Введение
История развития вычислительной техники.
Ещё 1500 лет назад для облегчения вычислений стали использовать счёты. В 1642 г. Блезс изобрёл устройство, механически выполняющее сложение чисел, а в 1694 г. Готфрид Лейбниц сконструировал арифмометр, позволяющий механически производить четыре арифметических действия.
Первая счетная машина, использующая электрическое реле, была сконструирована в 1888 г. американцем немецкого происхождения Германом Холлеритом и уже в 1890 г. применялась при переписи населения. В качестве носителя информации применялись перфокарты. Они были настолько удачными, что без изменений просуществовала до наших дней.
Первой электронной вычислительной машиной принято считать машину ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и вычислитель), разработанную под руководством Джона Моучли и Джона Экера в Пенсильванском университете в США. ENIAC содержал 17000 электронных ламп, 7200 кристаллических диодов, 4100 магнитных элементов и занимал площадь в 300 кв. метром. Он в 1000 раз превосходил по быстродействию релейные вычислительные машины и был построен в 1945 г.
Первой отечественной ЭВМ была МЭСМ (малая электронная счетная машина), выпущенная в 1951 г. под руководством Сергея Александровича Лебедева. Её номинальное быстродействие—50 операций в секунду.
Компьютеры 40-х и 50-х годов были доступны только крупным компаниям и учреждениям, так как они стоили очень дорого и занимали несколько больших залов. Первый шаг к уменьшению размеров и цены компьютеров стал возможен с изобретением в 1948 г. транзисторов. Через 10 лет, в 1958 г. Джек Килби придумал, как на одной пластине полупроводника получить несколько транзисторов. В 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел более совершенный метод, позволивший создать на одной пластинке и транзисторы, и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В 1968 г. фирма Burroughs выпустила первый компьютер на интегральных схемах, а в 1970 г. фирма Intel начала продавать интегральные схемы памяти.
В 1971 г. был сделан ещё один важный шаг на пути к персональному компьютеру—фирма Intel выпустила интегральную схему, аналогичную по своим функциям процессору большой ЭВМ. Так появился первый микропроцессор Intel-4004. Уже через год был выпущен процессор Intel-8008, который работал в два раза быстрее своего предшественника.
Вначале эти микропроцессоры использовались только электронщиками-любителями и в различных специализированных устройствах. Первый коммерчески распространяемый персональный компьютер Altair был сделан на базе процессора Intel-8080, выпущенного в 1974 г. Разработчик Altair—крохотная компания MIPS из Альбукерка (шт. Нью-Мексико)—продавала машину в виде комплекта деталей за 397 долл., а полностью собранной—за 498 долл. У компьютера была память объёмом 256 байт, клавиатура и дисплей отсутствовали. Можно было только щёлкать переключателями и смотреть, как мигают лампочки. Вскоре у Altair появились и дисплей, и клавиатура, и добавочная оперативная память, и устройство долговременного хранения информации (сначала на бумажной ленте, а затем на гибких дисках).
А в 1976 г. был выпущен первый компьютер фирмы Apple, который представлял собой деревянный ящик с электронными компонентами. Если сравнить его с выпускаемым сейчас iMac, то становится ясным, что со временем изменялась не только производительность, но и улучшался дизайн ПК.
Вскоре к производству ПК присоединилась и фирма IBM. В 1981 г. она выпустила первый компьютер IBM PC. Благодаря принципу открытой архитектуры этот компьютер можно было самостоятельно модернизировать и добавлять в него дополнительные устройства, разработанные независимыми производителями. За каких-то полгода IBM продала 50 тыс. машин, а через два года обогнала Apple по объёму продаж.
Производительность современных ПК больше, чем у суперкомпьютеров, сделанных десять лет назад. Поэтому через несколько лет обыкновенные персоналки будут работать со скоростью, которой обладают современные суперЭВМ. Кстати, в январе 1999 г. самым быстрым был компьютер SGI ASCI Blue Mountain. По результатам тестов Linpack parallel его быстродействие равнялось 1,6 TFLOPS (триллионов операций с плавающей точкой в секунду).
1. ОБЩАЯ ЧАСТЬ.
1.1. АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ.
1) Напряжение питания (В)………………………………………………0.25
2) Размеры печатной платы (мм)……………………………………..124*52
3) Максимальная температура окружающей среды 0С…………………..40
4) Давление (мм. Рт. Ст.)………………………………………….. 720 – 780
5) Влажность (%)…………………………………………………….. 60 – 80
6) Максимальный ток нагрузки (А)……………………………………..0,15
1.2 Описание принципиальной схемы параметрического эквалайзера.
К частотной коррекции спектра звуковых сигналов приходится прибегать как при записи музыкальных программ, так и при их прослушивании или звукоусилении в залах и на открытых площадках. В одних случаях применением эквалайзеров добиваются улучшения разборчивости речи, в других — естественности звучания музыкальных инструментов или просто регулируют тембр звучания на свой вкус. Не будем касаться вопроса частотной коррекции музыкальных сигналов при их записи в студиях, поскольку этим искусством владеют только опытные звукорежиссеры, и это не техническая задача. Модульный пульт чаще всего будет использоваться на "живых" речевых передачах, а музыка будет воспроизводиться с уже обработанных звукорежиссерами фонограмм. Условия, при которых работают музыкальные ансамбли в школах или на дискотеках, далеки от студийных и вряд ли позволят получить очень высокое качество звука. Основываясь на этих соображениях, полезно сравнить применение в модульном пульте различных частотных корректоров.
Установленные во входных линейках простейшие регуляторы тембра по высоким и низким частотам позволяют получить приемлемое на слух и примерно похожее звучание от всех микрофонов и источников звука. Но часто этого совершенно недостаточно. Например, для повышения разборчивости речи часто применяют фильтр "оптимальной обработки речи". Рекомендованный для работы в дикторских студиях радиовещания фильтр имеет подъем частотной характеристики в районе 5 кГц примерно на 6 дБ и ее спад ниже 100 Гц и выше 6 кГц. После обработки этим фильтром речь становится более разборчивой при повышенном уровне шума, но звучит "суше", менее естественно.
Очевидно, что простые регуляторы тембра не могут обеспечить получение необходимой частотной характеристики. Есть и другие задачи, требующие применения более сложной частотной коррекции. Например, в помещении, где установлены АС, которые могут обеспечить весьма высокое качество звука, вследствие сложения прямых и отраженных от стен звуков образуются стоячие волны, полностью изменяющие картину звучания одной из АС. Люди с хорошим слухом это слышат, но не имеют возможности исправить положение. Или беда звукоусиления — возникновение акустической "завязки". Можно снизить громкость, но тогда какой же смысл в таком звукоусилении?
В этих и многих других случаях требуется частотная коррекция в очень узкой полосе спектра, чтобы не изменять общий тембр звучания. Считается, что работа узкополосного режекторного фильтра "вырезающего" всего 1/10 октавы, совершена неощутима на слух, а речевых сигналах незаметна и потеря 1/5 октавы. Практически везде допустимо использовать третьоктавньй фильтр. В профессиональной аппаратуре применяют многополосные частотные корректоры — эквалайзеры. Но третьоктавньй эквалайзер с регулировками в 30 полосах не столько сложное, сколько очень громоздкое сооружение и встроить его в модульный пульт невозможно.
Поэтому остановимся на параметрическом эквалайзере, отличающемся от графического тем, что центральную частоту в полосе коррекции и добротность каждого звена можно регулировать в широких пределах. Оказывается, что параметрический эквалайзер с двумя полосами имеет примерно такие же возможности, как пяти — восьмиполосный графический, а если взять четыре полосы то в большинстве случаев возможна замена и графического третьоктавного. Обычно полосы регулируемых частот выбирают так, чтобы они перекрывали друг друга. Появляется возможность усилить, например, низкие частоты при широкой полосе пропускания одним звеном и "вырезать" при узкой полосе пропускания другого звена усиленный фон частотой 100 Гц или поднять высокие частоты и вырезать высокочастотные составляющие на 8 кГц "свистящих" звуков речи (с, ц, ч).
Каждое звено фильтра в двухполосном эквалайзере (его схема на рис. 1) собрано на счетверенном ОУ типа TL084 (TL074, 1401УД4). Диапазоны частотной коррекции полностью определяются выбором номиналов конденсаторов С5, С11 и С13, С14. При указанных значениях емкости интервалы перестройки центральной частоты составляют для "нижнего" диапазона не менее 0,1...2,5 кГц, для "верхнего" — не менее 0,2...5 кГц. Эти значения выбраны с расчетом перекрытия диапазона частот, занимаемого речевым сигналом, а также области частот, на которых обычно возникает акустическая обратная связь.
При выборе другого диапазона коррекции нужно пропорционально изменить номиналы конденсаторов. При емкости конденсаторов С5 и С11, равной соответственно 1200 пф и 1,5 мкФ, частотный диапазон регулировки фильтра составляет 40... 1200 Гц, а при емкости конденсаторов С13 и С14, равной соответственно 39 пф и 0,039 мкФ для другого фильтра, — 1,2... 15 кГц.
Полосу пропускания каждого фильтра можно изменять от 0,25 до 3,6 октавы. Усиление на центральной частоте фильтра можно изменять в пределах ±16 дБ. При коррекции подъемом увлекаться не следует учитывая ограниченный запас по перегрузке из-за низкого напряжения питания пульта. Тумблер SA1 включает эквалайзер; разъем XS1 — дополнительный линейный вход эквалайзера для подключения внешнего источника сигнала.