Министерство транспорта Российской Федерации
Федеральное Государственное Образовательное Учреждение
Государственная Морская Академия имени адмирала С.О. Макарова
Кафедра ТОЭ
Курсовая работа №6
“ Расчет переходных процессов в линейных цепях с сосредоточенными параметрами”.
Вариант № 21
Выполнил: к-т гр. Э-232
Попаденко Н.С.
Проверил: доцент, к.т.н
Попов Ю.В.
Санкт-Петербург
2005
Задана электрическая цепь, изображенная на рисунке 1:
Требуется:
1) Определить выражения для всех токов в цепи в переходном режиме, решив задачу классическим и операторным методами.
2) Определить выражения для напряжений на емкости и индуктивности, решив задачу классическим и операторным методами.
3) Построить кривые напряжения токов во всех ветвях и напряжений на емкости и индуктивности в функции времени.
Заданные параметры цепи:
(Ом); (Ом); | (Гн); (мкФ) |
1) Для t≥0 получим систему уравнений метода переменных состояния. Используя законы Кирхгофа, составим систему уравнений:
(1) | (2) (3) (4) |
В качестве переменных состояния рассмотрим
и , подставим уравнения (2,3,4) в систему (1), сведя ее к системе из двух уравнений:Приведем систему уравнений (5) к нормальной форме.
(В) |
| |
(А); | ||
3)
Корни характеристического уравнения можно найти из выражения входного комплексного сопротивления схемы переменному синусоидальному току, т.е для t≥0
; заменяем на р и выражение приравниваем к нулю: (1/с); (рад/с).4)
С помощью законов коммутации находим начальные условия переходного процесса:
(А); (В).Подставляя эти значения в систему (6) при t=0, получаем:
(В/с) (А/с)5)
Определим постоянные интегрирования, для этого составим систему уравнений. Первое уравнение системы – это уравнение искомой величины. Оно записывается в виде суммы принужденной и свободной составляющих. Принужденная составляющая найдена выше. Свободная составляющая записывается в соответствии с видом корней характеристического уравнения. При двух комплексных сопряженных корнях свободная составляющая представляет собой затухающую синусоиду, которая содержит две постоянных интегрирования А и . Для их определения необходимо второе уравнение. Его получают дифференцированием первого:При t=0 система сведется к виду:
Решение системы дает:
; А= 37,79 (В);Искомое решение для напряжения на емкости принимает вид:
(В).Аналогичным образом находим решение для тока второй ветви:
При t=0:
0.075= 0.0857+
50=
Искомое выражение для тока второй ветви:
(А);Определение
:Согласно уравнению (3)
, (В);Из системы (1):
II. Операторный метод расчета
1) Составляется операторная схема замещения исходной электрической цепи (Рис.1) для времени
. При этом все известные и неизвестные функции заменяются изображениями. Для нахождения параметров дополнительных источников операторной схемы замещения с помощью законов коммутации определяются независимые начальные условия (НУ): (А); (В).2) Находится изображение искомого тока. Операторная схема замещения содержит 3 источника в разных ветвях: основной и два дополнительных. Поэтому для нахождения изображения тока второй ветви воспользуемся законами Кирхгофа в операторной форме:
(7)Подставим выражения для начальных условий в систему (7). Первое уравнение системы подставим во второе, выразим ток
и подставим его в третье уравнение системы, в результате получили одно уравнение с одним неизвестным .