Смекни!
smekni.com

Промислова електроніка (стр. 3 из 8)

5. Вмикати напругу на лабораторну роботу тільки після дозволу викладача і особистій його присутності.

6. Перед тим, як зробити будь-які зміни у схемі, її необхідно вимкнути з джерела електромережі.

7. Після зроблених у схемі змін, вона повинна бути перевірена керівником лабораторних занять і тільки після дозволу керівника підключити до електромережі.

8. Треба пам’ятати, якщо у ланцюзі буде малий опір , то може виникнути великий струм. Це призведе до виходу з ладу приборів та стенду.

9. Слідкувати за межами вимірювання приборів.

10. У разі нещасного випадку негайно вимкнути напругу мережі, для чого потрібно натиснути на аварійну кнопку, розміщену на передній панелі лабораторного столу, а потерпілому надати першу допомогу і викликати швидку медичну допомогу за телефоном 03.

ЛАБОРАТОРНА РОБОТА №4

Тема: Дослідження роботи фоторезистора

Мета: зняття вольт-амперної характеристики та енергетичної характеристики фоторезистора

Устаткування: 1) універсальний стенд УЭ-100; 2) панель фоторезистора

Теоретичні обґрунтування

Фоторезистором називають напівпровідниковий фотоелектричний прилад з внутрішнім фотоефектом, в якому використовується явище фотопровідності, тобто зміни електричної провідності напівпровідника при його освітленні.

Якщо до неосвітленого фоторезистора підключити джерело живлення, то в електричному ланцюзі з'явиться невеликий струм, званий темновим струмом, обумовлений наявністю в неосвітленому напівпровіднику деякої кількості вільних носіїв заряду.

При освітленні фоторезистора струм в ланцюзі сильно зростає за рахунок збільшення концентрації вільних носіїв заряду. Різниця струмів за наявності і відсутності освітлення називається світловим струмом або фотострумом, величина якого залежить від інтенсивності освітлення, величини прикладеної напруги, а також вигляду і розмірів напівпровідника, використовуваного у фоторезисторі.

Однією з основних є енергетична характеристика фотоструму фоторезистора, тобто залежність фотоструму Iф від потоку випромінювання Ф, вимірюваного в люменах (рис. 1). Видно, що при малих значеннях світлового потоку характеристику можна вважати лінійною, а при великих значеннях фотострум не пропорційний світловому потоку.

Вольт-амперні характеристики більшості фоторезисторів лінійні (рис. 2), проте в деяких випадках при підвищенні напруги лінійність порушується.

На величину фотоструму Iф робить вплив також спектральний склад світлового потоку.

Рисунок 1 – Енергетична характеристика фотоструму фоторезистора

Рисунок 2 – Вольт-амперні характеристики фоторезистора

Фоторезистори володіють значною інерційністю, обумовленої часом генерації і рекомбінації електронів і дірок, що відбуваються при зміні освітленості фоторезистора. Час встановлення стаціонарної величини фотопровідності називається часом фотовідповіді фоторезистора. Час фотовідповіді визначає максимально допустиму частоту модуляції світлового потоку, тобто частотний діапазон роботи фоторезистора.

Порядок виконання|вміст,утримання| роботи

1. Установити в стенд панель фоторезистора, принципова схема наведена на рис. 2.

Рисунок 1 – Схема дослідження фоторезистора

2. За допомогою лампи накалювання засвітити фоторезистор, резистором R2 змінювати напругу на фоторезисторі та слідкувати за свідченнями амперметру. Дані занести в таблицю 1.

Таблиця 1

U, В
I, мкА

3. При постійній напрузі на фоторезисторі поступово удаляємо лампу накалу і слідкуємо за показаннями амперметра. Дані занести в таблицю 2.

Таблиця 2

Ф, лм
I, мкА

Обробка результатів вимірювань|вимірів| і обчислень

За даними таблиці 1 побудуйте вольт-амперну характеристику фоторезистора.

Побудувати енергетичну характеристику фоторезистора I=f(Ф)

Ф=I/(KU),

де К – питома чутливість фоторезистора.

Контрольні питання

1. Що називається внутрішнім фотоефектом?

2. Який прилад називається фоторезистором?

3. Як влаштований фоторезистор?

4. Поясніть принцип дії фоторезистора.

5. Що таке енергетична характеристика фоторезистора та який вид вона має?

6. Як знімаються вольт-амперні характеристики фоторезисторів?

7. Як впливає спектральний склад світлового потоку на величину фотоструму?

8. Який вид мають частотні характеристики фоторезисторів?

9. Якими параметрами характеризуються фоторезистори?

10. Де застосовуються прилади з внутрішнім фотоефектом?

Техніка безпеки

1. Уважно прочитати та вивчити інструкцію лабораторної роботи.

2. Пам’ятати, що в лабораторії існує небезпечна для людини висока напруга.

3. Зібрати схему згідно з інструкцією до лабораторної роботи, уникнути перехрещення проводів і надати викладачу для перевірки.

4. Вивчити значення кожного вимірювального приладу, шкалу відмітку, тощо.

5. Вмикати напругу на лабораторну роботу тільки після дозволу викладача і особистій його присутності.

6. Перед тим, як зробити будь-які зміни у схемі, її необхідно вимкнути з джерела електромережі.

7. Після зроблених у схемі змін, вона повинна бути перевірена керівником лабораторних занять і тільки після дозволу керівника підключити до електромережі.

8. Треба пам’ятати, якщо у ланцюзі буде малий опір , то може виникнути великий струм. Це призведе до виходу з ладу приборів та стенду.

9. Слідкувати за межами вимірювання приборів.

10. У разі нещасного випадку негайно вимкнути напругу мережі, для чого потрібно натиснути на аварійну кнопку, розміщену на передній панелі лабораторного столу, а потерпілому надати першу допомогу і викликати швидку медичну допомогу за телефоном 03.

ЛАБОРАТОРНА РОБОТА №5

Тема: Дослідження характеристик підсилювача

Мета: дослідження впливу різних кіл підсилюючого каскаду на його частотну характеристику.

Прилади та устаткування: 1) універсальний стенд УЄ-100; 2) панель підсилювача; 3) звуковий генератор; 4) підсилювач ПНЧ та гучномовець.

Теоретичні обґрунтування

Електронними підсилювачами називаються устрої які призначені для підсилення електричних сигналів.

Одним із найбільше суттєвих ознак, по яких класифікуються підсилювачі, є діапазон частот електричних сигналів. Розрізняють такі типи підсилювачів: підсилювачі низької частоти, підсилювачі постійного струму, широкополосні (імпульсні) підсилювачі, виборчі (селективні) підсилювачі.

У лабораторній роботі досліджується каскад підсилювача низької частоти ПНЧ. До складу каскаду входять джерело вхідного сигналу, підсилювальний елемент, навантаження і джерело живлення. У залежності від призначення каскаду джерелом вхідного сигналу можуть бути мікрофон, звукоприймач, різноманітні датчики, детектор радіоприймального устрою й інші. У якості підсилювального елемента часто використовують транзистор. Навантаженням каскаду можуть бути вхідний ланцюг наступного каскаду, підсилювач потужності й інші.

Підсилювач низької частоти призначений для підсилення електричних сигналів у деякій смузі частот. Про особливості підсилювачів низької частоти можна судити по його амплітудній (вхідній) і частотній характеристикам.

На рисунку 1 зображена амплітудна характеристика ПНЧ UBИX= f (UBX). По ній можна визначити динамічний діапазон D = UBИXmax/ UBИXmin. Чим більше D, тим вище якість підсилювача. Амплітудна характеристика помітно нелінійна при дуже малих і дуже великих напругах вхідного сигналу. Причому навіть при відсутності вхідного сигналу на виході є деяка напруга, що визначається власними шумами підсилювача. Тому дуже малі значення UBХmin вибирати не можна через те, що слабкі сигнали будуть заглушуватися напругою власних шумів. При великих вхідних сигналах відбувається перевантаження підсилювальних елементів, що призводить до зменшення посилення і перекручування сигналу, що посилюється. Тому дуже велике значення UBХmax, також не можна вибирати. Таким чином, динамічний діапазон підсилювача обмежений.

Рисунок 1 – Амплітудна характеристика підсилювача

На рисунку 2 зображена частотна характеристика К = f (f). По ній видно, що електричні сигнали, що проходять через ПНЧ, спотворюються. Викривлення збільшуються на самих нижчих і вищих робочих частотах. Це пов'язано зі зміною значення опору навантаження для різноманітних частот.


Рисунок 2 – Амплітудно-частотна характеристика підсилювача

Порядок виконання роботи

1. Ознайомитися з технічними даними вимірювальних приладів та обладнання.

2. Установити панель досліджуваного підсилювача.

3. Включити осцилограф та дати йому нагрітися.

4. Під час прогрівання рекомендується ввімкнути підсилювач низької частоти та спостерігати на екрані осцилографа за сигналами різної частоти та амплітуди, та одночасно прослуховувати їх за допомогою ПНЧ та гучномовця.

Рисунок 3 – Схема транзисторного підсилювача

5. Зняти амплітудну характеристику. Для цього поставити тумблери підсилювача в положення 1 та подавати від генератора на вхід сигнал частотою 400 Гц або 1000 Гц і змінювати його величину від 0 до 0,08 В. Зафіксувати показання вихідного вольтметра. Результати занести в таблицю 1.