Содержание
1 Звукозапись: аналоговая и цифровая. 4
2 Телевидение и видеозапись. 10
В настоящее время осуществляется на студиях звукозаписи, под управлением персональных компьютеров и другой дорогостоящей и качественной аппаратуры.
Принцип цифровой звукозаписи достаточно прост:
· вначале нужно преобразовать высококачественный аналоговый сигнал в цифровой, это осуществляет устройство — аналого-цифровой преобразователь (АЦП).
· для того чтобы прослушать сделанную запись, необходимо обратное преобразование из цифрового сигнала в аналоговый, с помощью цифро-аналогового преобразователя (ЦАП).
Основными параметрами, влияющими на качество цифровой звукозаписи, являются: разрядность АЦП и ЦАП. частота дискретизации АЦП и ЦАП.
Принцип действия АЦП — тоже достаточно прост:
· аналоговый высококачественный сигнал, полученный от высококачественных микрофонов, электро-музыкальных инструментов, акустических инструментов, духовых, ударных и проч., нужно преобразовать в цифровой.
Делается это следующим образом
· непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, при полосе частот высококачественной звукозаписи 20-20 000 Гц, требуется частота дискретизации от 44,1 до 96 кГц, и разрядность 24 (реже 32) бита[1], хотя в настоящее время появились АЦП и ЦАП c частотой дискретизации 192 и даже 384 кГц.
На студиях звукозаписи применяются звуковые карты в составе компьютеров, которые производят обработку в своих АЦП и ЦАП — чаще всего в 24 битах и 96 кГц, дальнейшее повышение битности и частоты дискретизации, практически не увеличивает качества записи.
В идеале процесс записи звука от входа записывающего устройства до выхода устройства воспроизведения должен быть «прозрачным», т.е. ничто не должно изменяться, кроме времени воспроизведения. Многие годы эта цель казалась недостижимой. Системы звукозаписи были ограничены в диапазоне и неизбежно вносили те или иные искажения. Но исследования привели к огромным улучшениям, и, наконец, с появлением цифровой звукозаписи достигнут почти идеальный результат.
Цифровая звукозапись. При цифровой звукозаписи аналоговый звуковой сигнал преобразуется в код из последовательностей импульсов, которые соответствуют двоичным числам (0 и 1) и характеризуют амплитуду волны в каждый момент времени. Цифровые аудиосистемы обладают огромными преимуществами перед аналоговыми системами в отношении динамического диапазона, робастности (информационной надежности) и сохранения качества при записи и копировании, передаче на расстояние и мультиплексировании и т.п.
Аналого-цифровое преобразование. Процесс преобразования из аналоговой формы в цифровую состоит из нескольких шагов.
Дискретизация. Периодически с фиксированной частотой повторения делаются дискретные отсчеты мгновенных значений волнового процесса. Чем выше частота отсчетов, тем лучше. По теореме Найквиста, частота дискретизации должна не менее чем вдвое превышать наивысшую частоту в спектре обрабатываемого сигнала. Чтобы не допустить искажений, связанных с дискретизацией, на входе преобразователя необходимо установить фильтр нижних частот с очень крутой характеристикой и частотой отсечки, равной половине частоты дискретизации. К сожалению, идеальных фильтров нижних частот не существует, и фильтр с очень крутой характеристикой будет вносить искажения, которые могут свести на нет преимущества цифровой техники. Дискретизацию обычно проводят с частотой 44,1 кГц, которая позволяет применять практически приемлемый фильтр для защиты от искажений. Частота 44,1 кГц была выбрана потому, что она совместима с частотой строчной развертки телевидения, а все ранние цифровые записи производились на видеомагнитофонах.
Эта же частота 44,1 кГц является стандартной частотой дискретизации для проигрывателей компакт-дисков и большей части бытовой аппаратуры, за исключением устройств записи на цифровую аудиоленту (DAT), в которых используется частота 48 кГц. Такая частота выбрана специально для того, чтобы воспрепятствовать нелегальному переписыванию компакт-дисков на цифровую магнитную ленту. В профессиональном оборудовании используется главным образом частота 48 кГц. В цифровых системах, применяемых для целей вещания, обычно работают с частотой 32 кГц; при таком выборе полезный диапазон частот ограничивается величиной 15 кГц (из-за предела дискретизации), но частота 15 кГц считается достаточной для целей вещания.
Квантование. Следующий шаг состоит в том, чтобы преобразовать дискретные отсчеты в код. Это преобразование выполняется путем измерения амплитуды каждого отсчета и сравнения ее со шкалой дискретных уровней, называемых уровнями квантования, величина каждого из которых представлена числом. Амплитуда отсчета и уровень квантования редко в точности совпадают друг с другом. Чем больше уровней квантования, тем выше точность измерений. Различия между амплитудами отсчетов и квантования проявляются в воспроизводимом звуке как шум.
Кодирование. Уровни квантования считаются в виде единиц и нулей. 16-разрядный двоичный код (такой же, как используемый для компакт-дисков) дает 65536 уровней квантования, что позволяет иметь отношение сигнал/шум квантования выше 90 дБ. Получаемый сигнал отличается высокой робастностью, так как от воспроизводящего оборудования требуется лишь распознать два состояния сигнала, т.е. определять, превышает ли он половину максимально возможного значения. Поэтому цифровые сигналы можно многократно записывать и усиливать, не опасаясь ухудшения их качества.
Цифро-аналоговое преобразование. Чтобы цифровой сигнал преобразовать в звуковой, его нужно сначала преобразовать в аналоговую форму. Такое преобразование обратно аналого-цифровому преобразованию. Цифровой код преобразуется в последовательность уровней (соответствующих исходным уровням дискретизации), которые сохраняются и считываются с использованием исходной частоты дискретизации.
Передискретизация. Аналоговый выходной сигнал цифро-аналогового преобразователя непосредственно использовать нельзя. Его нужно сначала пропустить через фильтр нижних частот, чтобы не допустить искажений, связанных с гармониками частоты дискретизации. Один из способов устранения этой трудности – передискретизация: частота дискретизации повышается путем интерполяции, что дает дополнительные отсчеты.
Коррекция ошибок. Одно из основных преимуществ цифровых систем состоит в возможности исправлять или маскировать ошибки и дефектные места, причиной которых могут быть грязь или недостаточное количество магнитных частиц при записи, что вызывает щелчки и пропуски звука, к которым человеческое ухо особенно чувствительно. Для исправления ошибок предусматривается проверка на четность, для чего к каждому двоичному числу добавляется бит проверки на четность, чтобы число единиц было четным (или нечетным). Если из-за ошибки произошла инверсия, то число единиц не будет четным (или нечетным). Проверка на четность обнаружит это, и либо будет повторен предыдущий отсчет, либо будет выдано значение, промежуточное между предыдущим и следующим отсчетами. Такая процедура называется маскировкой ошибок.
Компакт-диск (CD). Компакт-диск оказался первой общедоступной цифровой аудиосистемой. Это миниатюрная грампластинка диаметром 120 мм с цифровой записью на одной стороне, воспроизводимой на лазерном проигрывателе.
Полностью записанный диск звучит 74 мин. Он дает почти идеальное воспроизведение с частотной характеристикой от 20 Гц до 20 кГц и с превышающими 90 дБ динамическим диапазоном, отношением сигнал/шум и разделением между каналами. Проблема детонационного искажения звука для него не существует, так же как и проблема износа. Диски прочны, не требуют особой осторожности в обращении, не боятся пыли (в небольших количествах) и даже царапин, так как все это не наносит ущерба качеству воспроизведения.
Первый оригинал компакт-диска (мастер-диск) изготавливают методом фотолитографии, используя лазер для выжигания питов (микроуглублений) на поверхности фоторезиста, нанесенного на стеклянный диск. В процессе производства питы становятся выступами отражающей нижней поверхности пластиковых дисков, на которую затем наносится слой прозрачного пластика толщиной 1,2 мм.
Длина питов и расстояние между ними несут цифровую информацию. Питы идут по спирали длиной 5,7 км, которая начинается в центральной части диска, закручивается по часовой стрелке и доходит до края. Шаг спирали равен 1,6 мкм (примерно 1/40 диаметра человеческого волоса и около 1/60 среднего шага канавок записи на долгоиграющей пластинке). Информация в цифровом коде считывается лазерным лучом. Там, где луч попадает в промежутки между выступами, он отражается обратно и светоделительной призмой направляется на фотоприемник. Когда же считывающий лазерный луч попадает на выступ, он при отражении диффузно рассеивается. Поскольку компакт-диск представляет собой цифровую систему, выходной сигнал фотоприемника имеет лишь два значения: 0 и 1.
Принцип действия компакт-диска требует предельной точности фокусировки лазерного луча и трекинга (отслеживания дорожки). Обе функции осуществляются оптическими средствами. Сервомеханизмы фокусировки и трекинга должны очень быстро действовать, чтобы компенсировать деформацию диска, его эксцентриситет и другие физические дефекты. В одном из конструктивных решений используется двухкоординатное устройство с двумя катушками, установленными под прямым углом в магнитном поле. Они обеспечивают перемещение объектива по вертикали для фокусировки и по горизонтали для трекинга.