Смекни!
smekni.com

Узлы функциональной электроники (стр. 6 из 9)

4. Уровень собственных шумов.

Различают собственные шумы и шумы скольжения (Характерны для переменных резисторов (при регулировке). Уровень этого шума существенно выше токовых шумов.). Собственные делятся на тепловые(обусловленные хаотичным движением электронов. Имеют непрерывный широкий спектр , их уровень практически не зависит от материала , но зависит от температуры. Существуют, не зависимо есть или нет ток.) и токовые (обусловленные дискретной (зернистой) структурой резистора. При прохождении тока возникает пробой он и есть источник шума. Зависят от материала резистора. Уровень токовых шумов существенно больше тепловых.).

Собственные шумы измеряются в мкВ/В.

= Е/U [мкВ]/[В].

5. Температурный коэффициент сопротивления – показатель температурной стабильности. Показывает относительное изменение сопротивления при изменении температуры на один градус.

aR= DR/ Dt *1/R0

6.

Функциональная характеристика (кривая регулирования) – зависимость сопротивления от угла поворота.

А – линейная зависимость;

Б – логарифмическая;

В – показательная;

Схема замещения резистора.


RR - сопротивление резистивного элемента;

RК - сопротивление металлических контактов;

LR - паразитная индуктивность (зависит от конструкции резистора);

CR ­ - паразитная емкость;

RИЗсопротивление изоляции (оно обычно учитывается у высокоомных резисторов);

Особенности резисторов.

1. Непроволочные резисторы.

- широкая номенклатура R и P;

- малая величина L и C;

- малые габариты и стоимость;

Разновидности:

- ­углеродистые (пленочного типа).

Пленка пиролитического углерода (толщина сотые, десятые доли мкм).

Дешевые и высокостабильные, обладают низким уровнем шумов.

Недостаток это низкая стабильность высокоомных резисторов.

Пример резисторов – ВС, С1- 8.

- металлоокисные, металлопленочные (пленка сплава металла, либо окисла металла).

Достоинством таких резисторов является повышенная термостойкость и низкий уровень шумов. Недостаток это малая устойчивость к импульсным перегрузкам.

Пример резисторов – МЛТ, МТ.

- композиционные резисторы (смесь проводящего материала – углерода и диэлектрической связки).

Такие резисторы могут быть объемного типа и пленочного типа.

Достоинство – малая стоимость. Недостаток – зависимость сопротивления от напряжения и тока, высокий уровень шумов, низкая стабильность.

Пример резисторов –ТВО, С3- 2.

2. Проволочные резисторы.

(проволока из нихрома, константана или манганина).

Достоинство:

- высокая стабильность;

- высокая термостойкость;

- малый уровень шумов;

- высокая перегрузочная способность;

Пример резисторов – ПЭВ, С5- 35.

3.Специальные резисторы.

-

Варистор (сопротивление зависит от напряжения и тока);

Используется для стабилизации и ограничения напряжения (для стабилизации напряжения).

Основные параметры:

- классификационное напряжение UКЛ;

- классификационный ток IКЛ;

- коэффициент нелинейности;

b= RСТ / rДИН

4.Терморезисторы.

Как правило имеют отрицательный ТКС, хотя есть и позисторы с положительным ТКС. Терморезисторы характеризуются:

- номинальным сопротивлением при 20°С;

- ТКС;

- номинальная мощность рассеяния;

- постоянная времени t - характеризует тепловую инерционность: это время, в течении которого температура терморезистора изменяется на 63% при переносе его из воздушной среды при 0°С в воздушную среду с температурой 100°С.

5.Магниторезисторы.

Работают на основе магниторезистивного эффекта, это свойство полупроводникового устройства. Характеризуется зависимостью сопротивления от индукции магнитного поля ( В ). Строят график их зависимости, и рассматривают работу магниторезистора.

Конденсаторы.

Это элемент радиоэлектронной аппаратуры, обладающий сосредоточенной электрической емкостью, то есть способностью накапливать электрические заряды.

Классификация конденсаторов:

- по характеру изменения емкости:

постоянные;

переменные;

подстроечные;

специальные ( вариконды ) – нелинейные конденсаторы, емкость зависит от приложенного напряжения;

- по виду диэлектрика:

с органическими диэлектриками;

с неорганическими диэлектриками;

с газообразными диэлектриками;

с оксидными диэлектриками.

Система обозначений.

1.) К – постоянный конденсатор;

КТ – подстроечный конденсатор;

КП – переменный конденсатор;

КН – вариконд.

2.) число – обозначает тип диэлектрика:

10 керамический, с рабочим напряжением менее 1600В;

15 керамический, с рабочим напряжением более 1600В;

22 стекляннокерамический;

21 стеклянный;

31 слюдяной, малой мощности;

32 слюдяной, большой мощности;

40 бумажные, с рабочим напряжением менее 2 кВ;

41 бумажные, с рабочим напряжением более 2 кВ;

42 металлобумажные;

50 оксидные, электролитические алюминиевые;

51 оксидные, электролитические танталовые;

52 оксидные, объемно-пористые;

53 оксидные, полупроводниковые;

60 воздушные;

61 вакуумные;

71 полистирольные;

72 фторопластовые;

73 лавсановые.

Эти обозначения применимы для конденсаторов типа К, а для КП и КТ могут быть следующие обозначения:

1 вакуумные;

2 воздушные;

3 газообразные;

4 твердые.

3.) номер разработки.

Например:

К50-6

КТ4-1.

Условные графические обозначения.

Позиционное обозначение: С.

Основные параметры.

1.) Номинальная емкость.

, где:

x - диэлектрическая проницаемость;

S – площадь обкладок;

d – расстояние между обкладками.

У воздуха x=1, поэтому воздушные конденсаторы очень большие, для уменьшения их габаритов на обкладки добавляют какой-либо диэлектрик.

Все емкости стандартизованы по рядам номинальных ёмкостей:

Е3; Е6; Е12; Е24.

Е3 1; 2.2; 4.7

2.) Допуск на ёмкость.

Разность между номинальным и фактическим значением. Существует 14 допусков:

±0.1% - прецизионные;

-20% до +80% - последний класс точности.

3.) Номинальное рабочее напряжение.

Напряжение, при котором конденсатор работает в течение всего срока эксплуатации.

4.) Тангенс угла потерь.

tg(d) – тангенс угла диэлектрических потерь, из-за переполяризации диэлектрика, так как энергия рассеивается в виде тепла. Из-за наличия потерь угол между U и I становиться меньше 90°.

Для оценки tg(d) можно:

, где Rп. – сопротивление потерь.

Тангенс угла потерь это величина обратная добротности, поэтому:

.

5.) Сопротивление изоляции и ток утечки.

Ток утечки – это ток, который существует постоянно в диэлектрике конденсатора.

, где

Rиз. – сопротивление изоляции;

Iут. – ток утечки.

6.) Температурный коэффициент емкости.

Характеризует температурную стабильность емкости, это:

, где

С0 – ёмкость при температуре 20°С.

ТКЕ нормируется, например для керамических конденсаторов по ТКЕ существует 16 групп:

-2200*10-6 1/°С М2200

+100**10-6 1/°С П100.

Эти обозначения производятся на корпусе или обозначаются цветом.

Слюдяные конденсаторы делятся на 4 группы:

А не нормированное значение ТКЕ;

Б ±200**10-6 1/°С

В ±100**10-6 1/°С

Г ±50**10-6 1/°С

7.) Закон изменения емкости.

Используется для характеристики переменных конденсаторов:

- прямоемкостные ( прямая зависимость между емкостью и углом поворота ротора);

- прямоволновые (прямая зависимость между длиной волны и углом поворота ротора);

- прямочастотные (прямая зависимость между частотой колебательного контура и углом поворота ротора);

- логарифмические ( логарифмическая зависимость емкости от угла поворота ротора ).

Схема замещения конденсатора.

С – номинальная емкость;

Сз – емкость относительно корпуса;

Rиз – сопротивление изоляции;

Rп – сопротивление потерь;

Lc – емкостная индуктивность ( проявляется на больших частотах ).

Особенности конденсаторов.

Бумажные.

Выполняются в виде бумаги пропитанной маслом, и фольговых обкладок, которые затем сворачиваются в рулон. Достоинства:

широкие интервалы номиналов мощностей ( от 0.01 мкФ до 10мкФ ).;

широкие интервалы рабочих напряжений.

Недостатки:

малая температурная и временная стабильность;

большие потери.

Например: БМ ( бумажный малогабаритный );

КБГ ( бумажный герметизированный );

К40-1.

Металлобумажные.

Они выполнены из диэлектрической бумаги, а на неё с двух сторон напыляются обкладки, у них емкость больше и меньшие габариты. Достоинства: способность самовосстанавливаться после пробоя ( так как из-за малой толщины обкладок, металл в месте пробоя испаряется).