Смекни!
smekni.com

Малошумящие однозеркальные параболические антенны (стр. 2 из 3)

График 2– ДН облучателя (открытый конец прямоугольного волновода)

b) распределение поля в апертуре зеркала

Расчет распределения поля в апертуре зеркала осуществляется по следующим формулам:


, где

F0(Y) – диаграмма направленности облучателя, Y0 – угол раскрыва, Y - текущий угол.

, где

f0 – фокусное расстояние.

График 3 – Распределение поля в апертуре зеркала

В данном случае Y0 – текущий угол, а Y - сдвиг фаз между токами.


3. Расчет пространственной диаграммы направленности и определение параметров параболической антенны

Инженерный расчёт пространственной диаграммы направленности ДН параболической антенны часто сводится к определению ДН идеальной круглой синфазной площадки с неравномерным распределением напряжённости возбуждающего поля. В данном случае распределение напряжённости возбуждающего поля в основном определяется ДН облучателя в соответствующей плоскости. Выражение для нормированной ДН зеркальной параболической антенны при этом имеет вид:

,

где J1, J2 – цилиндрические функции Бесселя первого и второго порядка.

,

где

Екр, Емах – амплитуды поля на краю и в центре раскрыва.

Коэффициент, показывающий во сколько раз амплитуда возбуждающего поля, на краю раскрыва меньше амплитуды в центре раскрыва в соответствующей плоскости с учётом различий расстояний от облучателя до центра зеркала и до края зеркала;


Построим ДН зеркальной параболической антенны:

a) для плоскости Н

График 4 – Пространственная ДН в плоскости Н

b) для плоскости Е

График 5 – Пространственная ДН в плоскости Е


Уровень боковых лепестков.

Для плоскости Е

Для плоскости Н

Приближенно коэффициент направленного действия зеркальной антенны определяется выражением:

,

где

S – площадь раскрыва;

υрез – результирующий коэффициент использования поверхности

Коэффициент использования поверхности:


Эффективная площадь антенны:

Коэффициент направленного действия:

Коэффициент усиления антенны:

4. Конструктивный расчет антенны

a) Расчет профиля зеркала

Зеркальные антенны имеют наибольший КНД при синфазном возбуждении раскрыва (плоский фазовый фронт волны). Параболический профиль зеркала обеспечивает одинаковые длины электрических путей от облучателя, установленного в фокусе параболоида вращения, до каждой точки плоскости раскрыва (свойство параболы). В полярной системе координат парабола описывается уравнением

,

где

r, Y - полярные координаты;

f - фокусное расстояние;

Y изменяется от 0 до Y0.

График 6– Плоский фазовый фронт волны

b) Выбор конструкции зеркала

С целью уменьшения веса и ветровых нагрузок поверхность зеркала часто выполняется перфорированной, или сетчатой

Рисунок 3 – Конструкция зеркала

При такой конструкции зеркала часть энергии просачивается сквозь него, образую нежелательное излучение. Допустимым является значение коэффициента прохождения в обратном направлении.

,

где

Рпад, Робр – мощность излучения падающего на зеркало и в обратном направлении, соответственно.

Двухлинейная сетка работает удовлетворительно при расстоянии между проводниками меньше 0.1l и диаметре проводов не менее 0.01l.

dп = 0.1 × 0.06 = 0.006 (м);

d = 0.01 × 0.06 = 0.0006 (м).

c) Определение допусков на точность изготовления

Неточность изготовления зеркала вызывает несинфазность поля в раскрыве. Допустимыми являются фазовые искажения поля в раскрыве зеркала не более ± p/4. При этом уменьшение коэффициента усиления антенны не превышает нескольких процентов.

Пусть поверхность параболоида имеет некоторые неровности (выступы и углубления). Наибольшее отклонение от идеальной поверхности в направлении r обозначим через Δr.


Рисунок 4 – Допуски на точность изготовления зеркала

Путь луча, отраженного от неровности в месте наибольшего отклонения от r изменяется при этом на величину Dr + Dr × cosY, а соответствующий сдвиг фаз составит величину Dj = b×Dr×(1+cosY), и он не должен превышать величину p/4, отсюда получаем

Анализ полученного выражения для Dr показывает, что вблизи центра параболоида (Y = 0) необходимая точность изготовления зеркала наивысшая. Здесь наибольшее отклонение от идеальной поверхности не должно превосходить величины l/16 (т.е. 0.013) у кромки параболоида требования к точности получаются наименьшими. Точность установки облучателя также определяется нормами на наибольшие допустимые фазовые искажения поля в раскрыве. Пусть фазовый облучатель смещен на Dх. Тогда длины путей лучей от фазового центра до раскрыва увеличиваются. Наибольшее удлинение пути происходит у лучей, падающих на вершину зеркала. Это удлинение путей при малых смещениях можно приблизительно определить как Dх×cosY. Тогда изменение фазы составит величину

,

где

Dj0, Djа – фазовые искажения, возникающие из-за неточности установки облучателя, в центре и на краю раскрыва, соответственно. Эта величина не должна превышать p/4, отсюда получаем:

Таким образом, с увеличением угла раскрыва точность и установка облучателя в фокусе повышается.


Выводы

В результате проведенной работы сравним полученные данные с исходными:

Исходные данные:

2QН0.5 = 77 мрад - ширина ДН на уровне половинной мощности в плоскости Н

2QЕ0.5 = 82 мрад - ширина ДН на уровне половинной мощности в плоскости Е

УБЛ = -29 дБ – уровень боковых лепестков

Рассчитанные данные:

- уровень боковых лепестков в плоскости Н

- отклонение боковых лепестков в

плоскости Н от заданного значения

- уровень боковых лепестков в плоскости Е


- отклонение боковых лепестков в

плоскости Е от заданного значения

Полученная ширина ДН:

2QН0.5 = 81,4 мрад

2QЕ0.5 = 81 мрад

- отклонение в плоскости Н

- отклонение в плоскости Е

Отклонений в плоскости Н и Е незначительное.

Снижение уровня дальнего бокового излучения антенны обеспечивается прежде всего спадом амплитуды возбуждающего поля к краям раскрыва. Интенсивность дифракционного поля может быть оценена методом геометрической теории дифракции (ГТД).

Другой путь снижения поля в заднем полупространстве состоит в использовании специальных экранов, ослабляющих рассеянное поле. Этот способ можно проиллюстрировать на примере рупорной антенны. На рисунке 17 показана обычная рупорная антенна со специальными экранами. Экраны выполнены в виде части поверхности параболического цилиндра, фокальные линии которых совмещены с кромками рупора. В такой схеме заметно снижается уровень излучения в заднем полупространстве, но конструкция является слишком сложной. В зеркальных антеннах могут быть использованы более простые плоские экраны, как показано на рисунке 18,а и б. Использование одного экрана позволяет уменьшить уровень поля в заднем полупространстве на 8...14 дБ. Два последовательно расположенных экрана обеспечивают уменьшение уровня поля на 20... 25 дБ. Эти экраны могут выполняться из листового металла или густой проволочной сетки, причем жестких требований к точности выполнения и установки экранов не предъявляется.