Смекни!
smekni.com

Малошумящие однозеркальные параболические антенны (стр. 1 из 3)

РЕСПУБЛИКА КАЗАХСТАН

АЛМАТИТНСКИЙ ИНСТИТУТ ЭНЕРГЕТИКИ И СВЯЗИ

ФАКУЛЬТЕТ РАДИОТЕХНИКИ И СВЯЗИ

Кафедра Радиотехники

Курсовая работа

на тему: “Малошумящие однозеркальные параболические антенны”

Алматы 2008


ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Рабочая частота f, ГГц

Ширина ДН на уровне половины мощности 2Q0,5Н, мрад

Ширина ДН на уровне половины мощности 2Q0,5Е, мрад …

Уровень боковых лепестков, дБ

Средняя яркостная температура неба ТНСР, °К

Температура шумов приёмника Тпр, °К

Длина фидерной линии lф, м

Тип облучателя

Открытый конец прямоугольного волновода


СОДЕРЖАНИЕ

Техническое задание

Содержание

Введение

1. Расчет геометрических и электродинамических параметров облучателя и параболоида:

a) выбор фидера. Определение шумовой температуры фидерного тракта;

b) определение диаметра раскрыва;

c) аппроксимация аналитического вида ДН облучателя функцией вида

cosn/2Y;

d) определение угла раскрыва и фокусного расстояния зеркальной антенны.

2. Расчет геометрических и электродинамических характеристик поля:

a) диаграммы направленности облучателя;

b) распределение поля в апертуре зеркала.

3. Расчет пространственной диаграммы направленности и определение параметров параболической антенны.

4. Конструктивный расчет антенны:

a) расчет профиля зеркала;

b) выбор конструкции зеркала;

c) определение допусков на точность изготовления

Выводы

Список литературы

Приложение А


ВВЕДЕНИЕ

Параболические антенны в последнее время находят все более широкое применение в космических и радиорелейных линиях связи. В 1888 году известный немецкий физик Г. Герц в своих опытах по СВЧ оптике впервые применил в качестве фокусирующего устройства параболический цилиндр. Интерес к зеркальным антеннам не ослабевает и в наши дни в связи со стремительным развитием космических радиотехнических систем и комплексов. Достаточная простота и легкость конструкции, возможность формирования самых разнообразных диаграмм направленности, высокий КПД, малая шумовая температура – вот основные достоинства, зеркальных антенн, обуславливающих их широкое применение в современных радиосистемах. Целью данной курсовой является освоение методики проектирования зеркальных параболических антенн: определение их основных электродинамических параметров и конструктивный расчет. В курсовой работе определение поля излучения параболической антенны производится апертурным методом, который широко применяем при проектировании зеркальных антенн.


1. Расчет геометрических и электродинамических параметров облучателя и параболоида

a) выбор фидера. Определение шумовой температуры фидерного тракта

В качестве фидера будем использовать прямоугольный волновод для частоты f = 5 ГГц ([1], приложение А):

a x b = 4.0 x 2.0 (см);

a = 0.0431 (дБ/м).

Шумовая температура фидерного тракта Тафу определяется по формуле:

,

где α – коэффициент затухания линии передачи [дБ/м],

lф – длина фидерной линии [м].

КПД определяется по формуле:

b) определение диаметра раскрыва

Зеркальная антенна – направленная антенна, содержащая первичный излучатель и отражатель антенны в виде металлической поверхности. Параболическая зеркальная антенна представлена на рисунке 1.


Рисунок 1 – Зеркальная параболическая антенна

В случае равномерно возбуждённого раскрыва параболического зеркала ширина ДН приближённо определяется:

,

где

2Q0.5 – ширина диаграммы направленности на уровне половинной мощности, рад.;

l - длина волны излучаемого (принимаемого) антенной радиосигнала;

R0 – радиус раскрыва зеркала (рисунок 1).

Длина волны определяется по формуле:

Неравномерное возбуждение раскрыва зеркала приводит к некоторому расширению главного лепестка ДН, так как уменьшается эффективная площадь раскрыва. Чаще всего диаграммы направленности зеркальных антенн не обладают осевой симметрией, т.е. ширина главного лепестка в плоскостях Е и Н различна. В большинстве практических случаев это влечёт за собой следующее изменение:


, где

2QЕ0.5, 2QН0.5 ширина ДН соответственно в плоскостях Е и Н.

Для Е и Н плоскостей соответственно найдем радиус раскрыва:

Т. к. в курсовой имеются данные о ширине диаграммы направленности в обеих плоскостях, можно определить диаметр раскрыва dp = 2 × R0, причем из полученных двух значений диаметра следует выбрать наибольшее. Следовательно, R0 = 0,476(м).

dp = 2 × R0 = 2 × 0,476 = 0,952 (м)

c) аппроксимация аналитического вида ДН облучателя функцией вида cosn/2Y

В зависимости от размещения облучателя относительно зеркала можно получить то или иное значение КНД. При определенном оптимальном отношении Ro/fo КНД наибольший. Это объясняется тем, что количество теряемой энергии зависит от формы диаграммы направленности облучателя и от отношения Ro/fo. При уменьшении отношения Ro/fo от оптимального КНД уменьшается, так как увеличивается часть энергии, проходящей мимо зеркала. С другой стороны, увеличение этого отношения также приводит к уменьшению КНД в связи с более сильным отклонением закона распределения возбуждения от равномерного; оптимальное значение Ro/fo определяется по аппроксимированной нормированной ДН облучателя (аппроксимация функцией вида F(q)=cosn/2(q), где n определяет степень вытянутости ДН облучателя). Для облучателя в виде пирамидального рупора n = 6 ([1], таблица 4.1).

d) определение угла раскрыва и фокусного расстояния зеркальной антенны

С точки зрения оптимизации геометрии антенны по максимальному отношению сигнал/шум необходимо произвести следующий расчет.

Чувствительность g определяется по формуле:

Где первые четыре коэффициента не зависят от yо, а g' вычисляется:

, где

Т1 = Тпр + Т0 × (1 - η) + η × Тнср = 1500 × 290 × (1 – 0.871) + 0.871 × 5 = 1542 К

То = 290 К;

u = (0.02 – 0.03) – коэффициент, учитывающий «переливание» части мощности облучателя через края зеркала;

u = 0.025;

S = π × R2 = 3.14 × 0,476 = 0,712 м2, площадь апертуры зеркала;

n = 6 – определяется типом облучателя;

a1 = 1 - cosn+1Y0;

σа/2R = 0.4 × 10-4 – точность профиля зеркала.

Построим график функции γ`(Y0), по максимуму которого определим угол раскрыва зеркала.

График 1 – График функции γ`(Y0)


Y0 = 0.82 (рад) = 46,983° Þ a1 = 0,931, g = 0,877, g` = 5,216×10 –4.

Фокусное расстояние f может быть найдено из следующего соотношения:

В зависимости от размещения облучателя относительно зеркала можно получить то или иное значение КНД. При определенном оптимальном отношении R0/f0 КНД наибольший. Заданный интервал отношения R0/f0 = (0.8÷1.0). Расчетное отношение R0/f0 = 0.89, что удовлетворяет условию.

Определим шумовую температуру антенной системы:


2. Расчет геометрических и электродинамических характеристик поля

a) диаграммы направленности облучателя

Расчет сводиться к определению геометрических размеров облучателя, при которых уменьшение амплитуды поля на краю раскрыва зеркала происходит до одной трети амплитуды поля в центре раскрыва, и диаграммы направленности облучателя.

Рисунок 3 – открытый конец прямоугольного волновода

ДН рупорной антенны рассчитываются по формулам:

в Е плоскости

в Н плоскости

, где

β0 = 2×π/λ – волновое число

-аппроксимация аналитического вида ДН облучателя

Т.к. Ro-радиус раскрыва зеркала, был вычислен по приблизительной формуле он не удовлетворяет вычислениям, вследствие чего я выбрал Ro=0,407 (м) удовлетворяющий дальнейшим вычислениям.

dp = 2 × R0 = 2 × 0,407= 814 (м);

S = π × R2 = 3.14 × 0,407 = 1,52 м2, площадь апертуры зеркала;