В большинстве случаев при проектировании РЭС целевая функция нелинейно зависит от внутренних параметров, поэтому соответствующие задачи параметрической оптимизации относятся к задачам нелинейного программирования, для решения которых используются методы математического нелинейного программирования /2, 5-8/. Кроме того, в некоторых частных случаях (например, при топологическом проектировании РЭС) в силу высокой трудоемкости задач применение методов математического программирования затруднено, тогда используются различные приближенные способы получения решений, приближающихся к оптимальным, например, эвристические алгоритмы и т. д. /8-12/.
Кроме того, в зависимости от вида используемых математических моделей, задача оптимизации может быть детерминированной или стохастической, непрерывной или дискретной, аналитической или алгоритмической, при этом для каждого класса задач имеется свой, в достаточной степени апробированный, математический аппарат /2,5-10/. Так, для задач линейного программирования успешно применяется симплекс-метод /7, 8/.
Характерной особенностью задач оптимизации в САПР является тот факт, что классические методы нахождения экстремума, требующие аналитического выражения для целевой функции, практически неприменимы, так как в большинстве случаев используются алгоритмические модели, в которых вычисление значений целевых функций (критериев оптимальности) и их производных производится численными методами. Поэтому наиболее универсальными и эффективными для задач нелинейного программирования являются методы поисковой оптимизации /2,7,8/.
Для обеспечения возможности применения методов поиска к решению задачи оптимизации в постановке (1.3) необходимо некоторым образом упростить математическую постановку задачи: перейти от многокритериальной задачи оптимизации к однокритериальной и от задачи с ограничениями - к задаче безусловной оптимизации.
4. Многокритериальная оптимизация в задачах с ограничениями
4.1. Методы перехода от многокритериальной задачи оптимизации к однокритериальной
Для того, чтобы оценить насколько хорошо удовлетворяют требованиям ТЗ значения частных критериев качества при заданном наборе значений внутренних параметров X = (x1, x2.,…,xn), нужно построить обобщенный критерий качества (обобщенную целевую функцию) f(Х), которая одновременно учитывает требования ко всем частным критериям.
Иными словами, от многокритериальной задачи параметрической оптимизации в виде:
необходимо перейти к однокритериальной задаче:
Наиболее часто на практике используются следующие методы построения целевой функции (методы векторной свертки частных критериев): метод главного критерия, аддитивный, мультипликативный, минимаксный и вероятностный /7-9/.
В методе выделения главного критерия проектировщик выбирает один, наиболее важный с его точки зрения частный критерий качества, который и принимается за обобщенную целевую функцию, а требования к остальным частным критериям учитывают в виде ограничений f(X)=Kt(X), (1.7)
где t – номер наиболее важного частного критерия. Например, задана принципиальная электрическая схема логического элемента и условия работоспособности на следующие выходные параметры: y1 – коэффициент нагружения, y2 – запас помехоустойчивости, y3 – средняя рассеиваемая мощность, y4- задержка распространения сигнала. Необходимо рассчитать параметры пассивных элементов, то есть управляемые параметры – это сопротивления резисторов. В качестве целевой функции может быть выбран один из выходных параметров, например, y4 ( f(X)= y4 ).
В аддитивном методе каждому из частных критериев качества ставится в соответствие весовой коэффициент (вес i-го частного критерия 01i=1,…,s,), характеризующий важность данного критерия с точки зрения проектировщика (сумма весовых коэффициентов должна быть равна 1).
При построении целевой функции в аддитивном методе используется соотношение: если f (X)max, то -f (X)min. Каждый частный критерий можно включить в аддитивную целевую функцию по правилу: умножить на весовой коэффициент и включить в целевую функцию со знаком плюс или минус.
Чтобы построить минимизируемую целевую функцию f ¯(X)min, все минимизируемые частные критерии K¯i (X) (K¯i (X) min, i = 1,…,t) включают в аддитивную функцию со знаком плюс, то есть прибавляют к целевой функции, а все максимизируемые критерии K+i(X) ( K+i(X) min, i = t+1,…,s) включают в аддитивную функцию со знаком минус, то есть вычитают из целевой функции:
или для максимизируемой целевой функции:
t _ s +
f (X)=- Ki(X)+ Ki(X) ) max, (1.9)
i=1 i=t+1
где s – общее число частных критериев, а t – количество минимизируемых критериев.
В нашем примере четыре частных критерия, то есть s = 4, t = 2:
K1(X)max,
K2(X) max,
K3(X) min,
K4(X) min.
Пусть 0тогда
f(X) = K1(X) K2(X)K3(X) K4(X) max,
или
f(X) = K1(X) K2(X) K3(X) K4(X) min.
В мультипликативном методе используется правило: если f (X)max, то 1/ f (X)min при условии, что f (X)
В отличие от аддитивного метода, частные критерии не складывают, а перемножают. Кроме того, в мультипликативном методе не используют весовые коэффициенты. Целевая функция строится в виде дроби.
Если f(X)min, то в числитель дроби включают произведение всех минимизируемых критериев, а в знаменатель – произведение всех максимизируемых критериев: