Смекни!
smekni.com

Параметрическая оптимизация в задачах проектирования РЭС (стр. 1 из 3)

1. Основные понятия и определения

Оптимальное проектирование – это процесс принятия наилучших (оптимальных в некотором смысле) решений с помощью ЭВМ. Данная проблема возникает и требует решения на всех этапах проектирования и во многом определяет технико-экономическую эффективность и технологичность проектируемых изделий.

Большинство задач принятия решений можно сформулировать в терминах теории математического программирования, то есть в виде совокупности критериев качества и ограничений /1-8/.

В соответствии с общепринятыми обозначениями выделим управляемые (внутренние) параметры объекта проектирования X=(x1,…,xn) и выходные параметры Y=(y1,…,ym).

Как правило, при оптимизации целесообразно изменять не все внутренние параметры, а только те из них, которые оказывают наиболее существенное влияние на выходные параметры.

Выбор управляемых параметров осуществляют либо по результатам анализа чувствительности, либо в интерактивном режиме по желанию проектировщика / 2 /.

Для нахождения оптимальных решений должна быть известна математическая модель объекта проектирования, задающая зависимость выходных параметров Y от управляемых параметров X , адекватно описывающая работу объекта проектирования:

Y = F (X), (1.1)

где вектор F = (f1,f2.,…,fm) в качестве компонент может включать как функциональные, так и алгоритмические зависимости. В скалярном виде формула (1.1) примет вид:

Оптимизационная задача не может быть сформулирована при отсутствии математической модели объекта проектирования, при этом вид математической модели во многом определяет целесообразность и возможность применения того или иного метода.

На каждом этапе проектирования конструкции или технологии РЭС в начале работы приходится принимать решения в условиях неопределенности. Чаще всего это относится к построению или выбору варианта структуры объекта проектирования в рамках блочно-иерархического подхода /2, 3,7,8/, то есть к задачам структурной оптимизации.

Выбор варианта структуры во многом снимает неопределeнность, что позволяет строить математическую модель (1.1), (1.2) и проводить на ее основе параметрическую оптимизацию, то есть подбор наилучшего набора значений управляемых параметров (например, номиналов индуктивностей, емкостей, резисторов, параметров активных элементов, координат компонентов на плате и др.), при которых выполняются ограничения (технические требования технического задания) и достигают своих экстремальных значений (максимума или минимума) критерии качества объекта проектирования (наиболее важные с точки зрения проектировщика схемные и конструктивные выходные параметры объекта проектирования, по которым оценивается его качество), например, частотные характеристики, коэффициент передачи, потребляемая и выходная мощности, габариты, длина соединительных проводников, перегрев, температура и т. п.). Если параметрическая оптимизация проходит достаточно с небольшими временными затратами (несложные устройства, использование упрощенных математических моделей, отсутствие жестких требований на точность результатов и т. д.), может быть выполнен некоторый перебор различных структур построения проектируемого объекта, т.е. осуществлена структурная оптимизация устройства.

Решение задачи проектирования радиоэлектронного устройства с оптимальными характеристиками с использованием методов параметрической оптимизации /2,8/ включает три этапа: 1 – компьютерное моделирование устройства; 2 – составление целевой функции с выбором критериев оптимальности; 3 – поиск экстремума полученной целевой функции и определение оптимальных внутренних параметров устройства.

Моделирование (анализ) РЭС требует на соответствующих уровнях наличия математических моделей и проводится в основном численными методами /8/. Главным критерием моделирования наряду с необходимой точностью и адекватностью модели является быстродействие, скорость расчета на ЭВМ выходных параметров устройства.

Этап составления целевой функции при оптимизации устройства является самым творческим и неформальным /2,7,8/. Целевая функция строится на основе выходных параметров устройства (характеристик), которые необходимо оптимизировать.

Таким образом, оптимальное проектирование РЭС сводится к составлению или выбору целевой функции, многократному анализу характеристик (выходных параметров) устройств и затем минимизации или максимизации целевой функции с применением в различных методов оптимизации, выбор конкретного из которых обусловлен спецификой данной решаемой задачи.

2. Постановка задачи параметрической оптимизации на основе анализа требований ТЗ

Критерии качества и ограничения задачи параметрической оптимизации прямо либо опосредованно зависят от выходных параметров объекта проектирования Y = (y1,y2.,…,ym).

В простейшем случае в качестве критериев качества могут быть выбраны наиболее существенные с точки зрения проектировщика выходные параметры.

Все остальные выходные параметры при этом необходимо учесть в виде ограничений.

Критерии качества в литературе принято называть также целевыми функциями, критериями оптимальности, частными критериями качества, функциями цели и т.п. /2, 5-8/.

Обозначим критерии качества Ki = Ki(x1,x2.,…,xn), i = 1,…,s, где s – количество критериев качества, а Ki(X) – либо один из выходных параметров Y = (y1,y2.,…,ym), либо Ki(X) = (Y), где (Y) – заданная функциональная зависимость.

Все ограничения задачи параметрической оптимизации получаем на основе анализа технических требований к параметрам объекта проектирования, содержащихся в ТЗ. Рассмотрим формализацию ограничений на примере выходных параметров Y (для внутренних параметров Х справедливы аналогичные рассуждения).

Технические требования обычно имеют вид yj = TTj + j, где TTj – желаемое значение параметра yj, а j – его допустимый разброс ( j = 1,…,m ). Таким образом, справедливы двойные неравенства TTj - j  yj  TTj + j( j = 1,…,m ), то есть Yj -TTj - j TTj - j - yj( j = 1,…,m ). Таким образом, получаем L=2m неравенств вида gl(X), l= 1,…,L.

Общая математическая постановка задачи параметрической оптимизации, как задачи математического программирования /2, 5-8/ , имеет вид

Множество наборов значений управляемых параметров Х, удовлетворяющих ограничениям gl(X)  , l = 1,…,L, называют областью работоспособности, или областью допустимых значений управляемых параметров: XР = { X = x1, x2, …, xn)

gl(X), l=1,…,L }.

Если функция Ki(X) имеет один минимум или максимум в заданной области работоспособности, то ее называют одноэкстремальной (унимодальной), если несколько, то - многоэкстремальной. Каждый минимум (максимум) многоэкстремальной функции называют локальным, наименьший (наибольший) из них – глобальным.

Если ограничения на внутренние параметры gl(X) отсутствуют, то задача оптимизации называется безусловной, в противном случае – условной.

При практическом проектировании РЭС встают задачи поиска как безусловных, так и условных экстремумов унимодальных и многоэкстремальных функций.

Рассмотрим в качестве примера типичное ТЗ на разработку аналогового устройства – усилителя: ”Коэффициент усиления Кo на средних частотах должен быть не менее 10000, входное сопротивление R-вых не менее 1 МОм, выходное сопротивление R-вых не более 200 кОм, верхняя граничная частота fв не менее 100 кГц, температурный дрейф нуля Uдр не более 50 мкВ/град; усилитель должен нормально функционировать в диапазоне температур от –50 до +60 градусов Цельсия, напряжения источников питания +5 и –5 В, предельные отклонения напряжений не более +0,5%, усилитель эксплуатируется в стационарной установке, габариты платы 60х40 мм”. В данном случае выходными параметрами являются Y={ Кo,Rвх, Rвых, fв, Uдр }.

К внешним воздействиям относятся температура окружающей среды и напряжения источников питания. Управляемыми параметрами являются параметры элементов схемы.

Область работоспособности XР = {X10000 - Кo ,

1-Rвх , Rвых-200 , 100- fв, 50- Uдр }. Особенность технического задания для дискретных объектов (например, цифровых устройств) заключается в форме записи ограничений (условий работоспособности), которые могут иметь вид логических уравнений, таблиц истинности или даже текстовую форму.

Целью решения задачи параметрической оптимизации (1.3) является определение такого набора значений параметров X*=(x1*, x2*.,…,xn*), X*ХР, при котором критерии качества Ki(X*), i=1,…,s достигают своих наилучших (минимальных или максимальных ) значений.


3. Классификация задач параметрической оптимизации

Задача параметрической оптимизации (1.3) является многопараметрической, многокритериальной и содержит ограничения, все эти факторы определяют особенности, возникающие в процессе ее решения. В зависимости от вида критериев качества и ограничений проводят классификацию задач параметрической оптимизации (задач математического программирования) /2,5-8/.

Если целевая функция и ограничения линейные функции вида

С0 + С1Х1+ С2Х2+…+ СnХn., (1.4)

то задача оптимизации вида (1.3) называется задачей линейного программирования, в противном случае – задачей нелинейного программирования.

Если целевая функция квадратичная, а ограничения – линейные функции, то задача (1.3) называется задачей квадратичного программирования.

Если целевая функция и ограничения имеют вид Х1Х2…Хn., то задача (1.3) – это задача геометрического программирования.

Если целевую функцию можно представить в виде суперпозиции функций, то задача (1.3) – это задача динамического программирования.

Если целевая функция и ограничения целочисленные функции, то задача (1.3) – это задача целочисленного программирования.