Смекни!
smekni.com

Основные характеристики пространственной структуры излучения (стр. 2 из 2)

.

Амплитудно-частотная характеристика свободного пространства для распространяющихся в передней полусфере радиоволн равна единице

,
,
,

где

- координаты волнового вектора в полярной системе координат (рис. 2.9.2):

,

,

- угол между направлением распространения плоской радиоволны и осью z, т.е. угол отклонения (дифракции) электромагнитных волн от направления, перпендикулярного плоскости пространственного сигнала.

Фазочастотная характеристика свободного пространства

изображена на рис. 3.

Поведение фазочастотной характеристики свободного пространства представляет наибольший интерес в диапазоне пространственных частот, равной ширине амплитудно-частотного спектра пространственного сигнала, которая по аналогии с шириной спектра временного сигнала

определяется пространством сигнала :

,
,

,

где

- обобщенный линейный размер пространства сигнала.

Это означает, что поведение фазочастотной характеристики свободного пространства представляет интерес в диапазоне углов дифракции:

.

Учитывая это, фазочастотная характеристика свободного пространства может приближенно рассматриваться в различных условиях дифракции:

1) в условиях приближения геометрической оптики изменением ФЧХ свободного пространства в диапазоне углов дифракции

можно пренебречь

Рис. 3. Фазочастотная характеристика свободного пространства.


Рис. 4. Диаграмма направленности антенны при равномерном АФР.

,

если второе (отброшенное) слагаемое разложения в ряд Маклорена много меньше

радиан

,

что выполняется в области глубокой ближней зоны

.

2) в условиях дифракции Френеля фазочастотную характеристику свободного пространства в диапазоне углов дифракции

можно аппроксимировать параболой

,

если третье (отброшенное) слагаемое разложения в ряд Маклорена много меньше

радиан

,

что выполняется на расстояниях

т.е. практически в области ближней зоны

.

3) в условиях дифракции Фраунгофера, когда изменение фазочастотной характеристики свободного пространства в диапазоне углов рефракции

больше
радиан

т.е. практически в области дальней зоны

.

При этом решение дифракционной задачи упрощается в большей мере, чем даже в частных случаях дифракции Френеля или приближения геометрической оптики. Действительно, поле в дальней зоне, используя полярную систему координат

,

,

,

можно представить в следующем виде:

.

Учитывая ограниченную область изменения пространственной частоты

, относительно малые размеры пространства сигнала
, относительно небольшой диапазон изменения углов дифракции
, можно вычислить интеграл путем ряда уточнений, преобразований переменной интегрирования упрощений:

- уточнение пределов интегрирования

,

- упрощение подынтегрального выражения

,
,

- переход к переменной интегрирования

, а от нее – к переменной

Дальнейшее вычисление интеграла основано на использовании относительно медленного изменения функции

по сравнению с изменением функций
и
в дальней зоне
. Это позволяет вынести за знак интеграла функцию
:

.

Осуществляя замену переменной интегрирования

,

приводим выражение в интегралах Френеля

.

Учитывая асимптотические свойства интегралов Френеля,

,

находим окончательно:

.

Возвращаясь к двумерному интегралу, определяющему поле в дальней зоне источника излучения (в плоскости

), с точностью до несущественного постоянного фазового сдвига, получаем

.

Таким образом, в дальней зоне (зоне Фраунгофера) распределение поля определяется формой спектра исходного поля. Этот результат широко известен в теории антенн, где распределение поля по углам в дальней зоне (диаграмма направленности антенны) есть преобразование Фурье от распределения в раскрыве антенны.

При регулярном АФР поля в плоскости излучения диаграмма направленности характеризуется наличием главного лепестка определенной формы и ширины,а также наличием боковых лепестков определенного уровня. Так, например, при равномерном распределении (АФР) поля на раскрыве

,
,
,

диаграмма направленности излучения имеет форму

в обеих плоскостях:

Угловая ширина диаграммы направленности антенны пропорциональна ширине спектра пространственного сигнала

,

.

Таким образом, диаграмма направленности антенны и ее ширина (рис. 4) является важнейшими пространственными характеристиками излученного (зондирующего) сигнала, определяющими направленность излучения антенной системы с регулярным амплитудно-фазовым распределением поля на ее разрыве.


ЛИТЕРАТУРА

1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, БГУИР, 2004.

2. Девятков Н.Д., Голант М.Б., Реброва Т.Б.. Радиоэлектроника и медицина. –Мн. – Радиоэлектроника, 2002.

3. Медицинская техника, М., Медицина 1996-2000 г.

4. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.

5. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2002.

6. Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.