БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра ЭТТ
РЕФЕРАТ на тему:
«Основные характеристики пространственной структуры излучения»
МИНСК, 2008
До сих пор при изложении вопросов обнаружения сигналов на фоне помех учитывалась только их временная структура. В то же время как сигналы, так и помехи являются электромагнитными полями, которые характеризуются амплитудными
и фазовыми распределениями на раскрыве передающей или приемной антенны, где x,y - координаты раскрыва.Под пространством сигнала будем понимать для определенности плоскость (x,y). На плоскости (x,y) в пределах площади
существует поле f(x,y,t), а вне поле равно нулю (рис. 2.9.1)
где A(x,y,t) и
- амплитуда и фаза поля.Пусть пространственный сигнал f(x,y) представляет распределение на плоскости Z = 0, т.е. на плоскости (x,y), амплитуд и фаз поля монохроматического колебания
,
где
- амплитуда, круговая частота и начальная фаза монохроматического колебания.При этом поле в полусфере бесконечного радиуса при Z > 0, опирающейся на плоскости Z = 0, является суммой плоских волн с различными амплитудами, фазами и направлениями распространения:
Рис. 1. Пространство сигнала.
Рис. 2. Проекции волнового вектора на координатные оси.
где
- радиус-вектор, проведенный из начала координат в точку наблюдения;- волновой вектор, модуль которого
;
- проекция волнового вектора;
- комплексная функция, которая описывает амплитуду и фазу отдельной плоской волны с направлением распространения, определяемым совокупностью двух действительных переменных и .
Заметим, что факт распространения плоской волны в любом направлении отражается условием сохранения фазы волнового фронта, распространяющегося со скоростью света С :
, если
.
Факт суммирования плоских волн, распространяющихся во всех направлениях передней полусферы, отражается их двойным интегрированием по всем направлениям.
Направление распространения волна определяется проекциями волнового вектора на координатные оси (рис.2). В общем случае направление распространения волны определяется двумя углами
и . Если эти углы выбраны по отношению к прямоугольной системе координат x, y, z так, как показано на рис. 2, то,
.
Так как три проекции волнового вектора связаны соотношением
, то независимых проекций всего две - и , а третья проекция.
Используя введенные обозначения, перепишем выражение для искомого поля так
Определим комплексную функцию . Очевидно, что приведенное решение волнового уравнения должно удовлетворять следующему условию – на плоскости Z=0 это решение должно иметь вид заданного пространственного сигнала
Полученное выражение представляет собой обратное двумерное преобразование Фурье. Прямое двумерное преобразование Фурье позволяет найти функцию
:.
Функция
, определяющая распределение амплитуд и фаз плоских волн по направлениям согласно последнему выражению может быть названа спектром волнового поля или угловым спектром поля. Название “угловой спектр” отражает связь аргументов и с углами распространения и соответствующих плоских волн.Последние два соотношения представляют собой прямое и обратное преобразование Фурье для двух переменных -
и (x, y). Переменные x, y являются координатами точек пространства и имеют размерность длины. Переменные и имеют размерность, обратную длине. Эти переменные называются пространственными частотами. Такое название вполне оправдано. Параметр x или у в пространственном сигнале подобен времени t во временном сигнале, а параметр или подобен круговой частоте в спектре временного сигнала. Поэтому оправданным является и другое обозначение переменных и как круговых пространственных частот,
.
Таким образом, переменные
и имеют двойной физический смысл – это, с одной стороны, пространственные частоты, а с другой стороны, величины, определяющие углы распространения плоских волн, на которые разлагается волновое поле.Решение волнового уравнения остается двузначным, так как можно выбрать любой из двух знаков перед координатой z в показателе экспоненты. Эта неопределенность знака устраняется, если учесть поведение неоднородных волн при увеличении z.
В отличие от распространяющихся плоских волн при
неоднородные волны получаются при
,
которые экспоненциально затухают вдоль координаты z. При этом убывающее с ростом z поле мы получим только в том случае, если выберем в указанном показателе экспоненты перед z знак ''+". С учетом этого решение волнового уравнения, определяющее комплексную амплитуду поля в передней полусфере в виде суперпозиции плоских волн различных направлений (в том числе и неоднородных) с различными амплитудами и фазами, обретает окончательный вид
Заметим, что решение волнового уравнения является отражением двух базовых явлений: явления дифракции радиоволн, т.е. отклонения направления распространения радиоволн от нормали к излучающему раскрыву, и явления интерференции радиоволн, т.е. сложения (суперпозиции) плоских радиоволн с различными амплитудами, фазами и направлениями распространения.
Сомножитель
подынтегральном выражении доопределяет фазу каждой составляющей углового спектра поля с учетом того, что сигнал в передней полусфере наблюдается на плоскости, перпендикулярной оси z на расстоянии z от плоскости входного пространственного сигнала. Поэтому этот сомножитель условно может рассматриваться как частотная характеристика свободного пространства