Смекни!
smekni.com

Сигнали та процеси в радіотехніці (стр. 4 из 9)

Рис. 2.1 Графік АМК


Для побудови спектру АМК скористаємося теоремою зсуву, згідно з якою при модуляції результуючий спектр за формою співпадає зі спектром керуючого сигналу, але зміщений відносно нього на величину

- несучу частоту.

Амплітуда n - ї бічної складової АМ-сигналу обчислюється за формулою:

,

де М - коефіцієнт модуляції, Мn - парціальні коефіцієнти модуляції, U0 - амплітуда несучого коливання, An -амплітуди n-ї гармоніки керуючого сигналу. Врахуємо чисельні значення М та U0:

(2.3)

Побудуємо спектр АМК:

Рис. 2.2 Спектр АМК


Побудуємо векторну діаграму АМК у момент t=0. Кожній гармоніці відповідає пара векторів довжиною А ́n, які обертаються назустріч один одному з відповідною частотою ω0±nW та початковою фазою

. Так як сама система координат обертається з частотою ω0, несуче коливання відображується нерухомим вектором U0. Для оглядності обмежимося зображенням 6 пари бічних складових включно.

Рис. 2.3 Векторна діаграма АМК

2.2 Кутова модуляція

У випадку ЧМК частота несучого коливання змінюється пропорційно миттєвій амплітуді керуючого коливання. Функція частоти тоді буде мати вигляд:

,

де коефіцієнт к визначає девіацію частоти. Так як амплітуда сигналу дорівнює одиниці, то

. Для забезпечення вузькосмуговості девіацію частоти обирають значно меншою за несучу. Не обмежуючи загальності для зручності візьмемо k=1:

(2.4)

Рис. 2.4 Залежність частоти ЧМК від часу

Поточну фазу знайдемо за формулою:

(2.5)

Якщо процес почався при t=0, то

Так як керуючий сигнал заданий на чотирьох інтервалах часу, то результат також отримаємо для чотирьох інтервалів. Функція фази накопичувальна, тому для кожного наступного інтервалу можна використати повну фазу, накопичену у попередньому інтервалі:

(2.6)

Розрахуємо значення вирази:

(2.7)

Поточна фаза буде визначатися складною функцією:




Рис. 2.5 Залежність фази ЧМК від часу

У випадку ФМК фаза несучого коливання змінюється пропорційно миттєвій амплітуді керуючого коливання. Функція фази тоді буде мати вигляд:

Як і у попередньому пункті, для спрощення розрахунків візьмемо k=1.

Для чотирьох інтервалів отримаємо:

(2.7)

Побудуємо графік фази ФМК:


Рисунок 2.6 Залежність фази ФМК від часу

Частота ФМК знаходиться за формулою:

(2.8)

Остаточний вираз буде мати такий вигляд:

(2.9)

Отриманий результат зобразимо на графіку:


Рисунок 2.7 Залежність частоти ФМК від часу

У загальній формі вирази для ФМК та ЧМК мають вигляд:

(2.10)

Виконаємо перетворення виразу:

(2.11)

Таким чином, з точністю до константи у фазі отримали фазово-модульований сигнал з парціальними індексами модуляції

(2.12)

Отже, часова залежність для ФМК та ЧМК має однаковий вигляд, відрізняються лише індекси модуляції.

Несучу частоту візьмемо рівною

. Оберемо коефіцієнти фазової та частотної модуляції
(вирази (2.1), (2.2)).

Функція часу для ЧМК тоді буде мати вигляд:

2.3 Амплітудний спектр ЧМК

Часовий запис ЧМК для довільного керуючого сигналу у загальній формі має вигляд:

де Jn (m) - функція Бесселя n -го порядку від аргументу m.

Оберемо індекс модуляції по частоті

. Тоді розрахуємо парціальні індекси модуляції за формулою (2.3). Отримаємо:

де An - гармоніки керуючого сигналу

Таблиця 2.2

n 1 2 3 4 5
An 0.336 0.405 0.217 0 0.078
mn 1.679 1.013 0.362 0 0.078

Обмежимося рівнем 0.1 від максимального m - отримаємо кількість множників n=3:

Таблиця 2.3

n 1 2 3
mn 1.679 1.013 0.362

У цьому випадку запис сигналу у часовій області буде апроксимований наступним виразом:

Знайдемо амплітуди бічних складових ЧМК. Для цього згрупуємо коефіцієнти при експонентах

. Верхні бічні складові Аn:

При заходженні амплітуд від’ємних бічних складових врахуємо, що функції Бесселя з непарними індексами будуть від’ємними. Тоді амплітуди гармонік будуть мати вигляд: