АНАЛИЗ ПРОХОЖДЕНИЯ ПЕРИОДИЧЕСКОГОСИГНАЛА ЧЕРЕЗ LC-ФИЛЬТР С ПОТЕРЯМИ
Аннотация
В данной курсовой работе с помощью интегрированной среды Mathcad выполнен расчёт: А-параметров фильтра как четырёхполюсника, номинальных величин элементов схемы, коэффициента передачи четырёхполюсника по напряжению, входного и выходного сопротивлений фильтра, входного и выходного напряжений П-образного реактивного фильтра высоких частот после подключения его к ЭДС в виде последовательных импульсов.
Курсовая работа состоит из текстовой и графической частей.
Графическая часть работы содержит графики АЧХ коэффициента передачи, АЧХ входного и выходного сопротивлений, форму входного и выходного напряжений, выполненных на формате А1.
Содержание:
1. Введение
2. Анализ заданной ЭДС
2.1. Разложение функции в ряд Фурье
2.2Поиск ширины спектра ЭДС
3. Расчет номинальных величин элементов
4. Расчет А-параметров схемы ФВЧ
5. Коэффициент передачи
6. Граничные частоты
7. Входное и выходное сопротивления фильтра
8.Расчет формы входного и выходного напряжений
9.Изменение параметров схемы
10. Заключение
11. Список литературы
1.Введение
Произошедшая научно-техническая революция затронула все виды деятельности человека даже такие как медицина, наука, сельское хозяйство, а также промышленность. С появлением компьютеров появилась необходимость кадровой переподготовки. Специалисты во всех областях знаний стали осваивать работу на персональном компьютере.
Работа на ЭВМ имеет много преимуществ. Самое основное и главное преимущество-быстродействие и точность. Человеку больше не требовалось производить различные вычисления вручную. Ему нужно было только запрограммировать компьютер, а тот за минимальное время все рассчитает. Это позволяло при минимальных затратах времени экономить множество труда и здоровья. При появлении персональных ЭВМ процесс использования новейших знаний и технологий намного улучшился. С помощью специальных программ инженеры могли теоретически (без практических исследований и опытов) проанализировать и рассчитать все интересующие их процессы и явления, происходящие в различных сферах нашей деятельности.
Компьютеризация коснулась и инженерную сферу деятельности. На заводах и предприятиях стали вводить автоматические системы, которые стали выполнять работу человека без его непосредственного участия. Это нововведение сэкономило много времени и сил. Но, чтобы эти системы нормально функционировали, нужно было их правильно запрограммировать и задавать им точные данные. Вот почему инженеры изучают различные компьютерные программы, такие как Autoсad, Mathсad, Exel, ElectronicWorkBench, КОМПАС и многие другие.
Задача анализа ЭДС включает в себя следующие пункты:
1) Разложение гармонической функции в ряд Фурье
2) Поиск ширины спектра ЭДС
1.1) Любую функцию
, удовлетворяющую условиям Дирихле, можно представить в виде ряда Фурье: , (1)где
(2)- среднее значение функции за период или постоянная составляющая, называемая иногда нулевой гармоникой спектра.
(3а)и
(3б)- амплитуды косинусоидальных и синусоидальных составляющих ряда соответственно.
- амплитуда k-ой гармоники спектра. (4) - начальная фаза k-ой гармоники. (5) - периодическая функция, удовлетворяющая условиям Дирихле. - угловая частота (рад/с). (6)F – циклическая (Гц) частота первой гармоники спектра или основная частота.
Т – период повторения функции
. - любой произвольно выбранный момент времени условно принятый за нулевой.Непосредственный анализ эдс по рис.3-10 показывает, что она имеет три участка: 1)Прямая, равная E, лежащая в отрезке времени от 0 до
;2) Прямая, равная –E1, лежащая в отрезке времени от до ; 3) Прямая, равная Е, лежащая в отрезке времени от до Т. Поэтому уравнение эдс может быть записано в виде ,где
(7)Для данной эдс (7) по формулам (2),(3а),(3б) имеем интегральные выражения:
, (8) , (9) (10)- где
Возьмём интегралы используя интегрированную среду Mathcad(далее просто Mathcad). После подстановки пределов интегрирования и алгебраических преобразований получаем выражения
, , ,-6.2832
Подставив конкретные значения в формулы (1),(4) получим:
Так как функция чётная получим
Рис.1 График e(t)
1.2) Теоретически спектр периодической функции бесконечен. Однако на практике под шириной спектра понимают диапазон частот
, в пределах которого суммарная мощность гармоник составляет 90% или более от полной средней мощности сигнала за период.Среднюю за период мощность сигнала можно найти по формуле:
, (11)- где
- напряжение или ток.При использовании ряда Фурье среднюю за период мощность сигнала, переносимою постоянной составляющей и первыми n гармониками, можно найти по формуле
(12)по заданному отношению
с помощью формул (11) и (12) можно найти номер максимальной гармоники и рассчитать ширину спектра как или .С помощью Mathcad рассчитаем по формуле (11) полную мощность эдс:
Вычисляя последовательно по формуле (10) амплитуды гармоник и вклад каждой из них в общую мощность, можно найти ширину спектра сигнала.
Номер гармоники | Амплитуда гармоники | Мощность гармоники | Суммарная мощность | |
0 | 0.7600E | 0.5776 | 0.5776 | 0.4272 |
1 | 0.8233E | 0.3389 | 0.9165 | 0.6779 |
2 | 0.6661E | 0.2218 | 1.1384 | 0.8420 |
3 | 0.4442E | 0.0986 | 1.2371 | 0.9150 |
Таким образом, постоянная составляющая и первая гармоника переносят более 90% полной мощности сигнала. Поэтому n=1 и ширину спектра сигнала нужно принять равной
nF=1*1,0=1 кГц.
В задании дана схема П-образного ФВЧ. У данного фильтра в крайних вертикальных ветвях включены индуктивности L2, а в горизонтальной ветви ёмкость С1. Поэтому ёмкость конденсатора Ск1 равна С1, а индуктивности катушек Lк2 =2L2.