Смекни!
smekni.com

Элементы оптоэлектронных устройств (стр. 1 из 2)

Министерство образования Республики Беларусь

Учреждение образования

“Белорусский государственный университет

информатики и радиоэлектроники”

кафедра ЭВС

РЕФЕРАТ

На тему:

«Элементы оптоэлектронных устройств»

МИНСК, 2008


1. Оптоэлектронный переключатель представляет гибридную микросхему, содержащую оптоэлектронную пару и усилитель. В переключателе используются высокоэффективные светодиоды на основе apceнида галлия, легированного кремнием, и быстродействующие кремниевые p-i-n-фотодиоды. Иммерсионной средой является халькогенидное стекло с показателем преломления 2,7. Коэффициент передачи тока в оптоэлектронной паре составляет 3—5 при нормальной температуре, времена включения (сумма времен задержка и нарастания фронта) 100—250 пс, гальваническая развязка цепи светодиода и фотоприемника по постоянному току 109 Ом. Микросхема выполнена в круглом металлостеклянном корпусе типа ТО-5.

2. Оптоэлектронный ключ предназначен для коммутации высоковольтных цепей переменного и постоянного токов. Он имеет четыре независимых канала, каждый из которых содержит две оптоэлектронные пары, состоящие из светодиода и высоковольтного p-i-n-фотодиода. Фотодиоды соединены встречно-последовательно, поэтому сопротивление ключа в запертом состоянии (в отсутствие тока через светодиоды) независимо от полярности приложенного напряжения определяется темновым сопротивлением смещенного в обратном направлении p-i-n-фотодиода; значение его составляет примерно 109 Ом.

3. Транзисторный ключ предназначен для коммутации постоянных напряженийдо 50 В. Прибор имеет два независимых канала, каждый из которых содержит оптоэлектронную пару, состоящую из арсенидгаллиевого светодиода и кремниевого n-p-i-n-фототранзистора. Оптоэлектронная пара имеет коэффициент передачи тока 2, номинальный рабочий ток 10 мА, быстродействие в режиме усиления 100—300 нс.

4.Коммутатор аналоговых сигналов предназначен для применения в системах селективной обработки аналоговых сигналов. Электрическая схема одного канала коммутатора приведена на рис. 1. Канал содержит оптоэлектронную пару, состоящую из арсенидгаллиевого светодиода и двух встречно включенных n-i-n-фотодиодов, выполненных в одном монокристалле.

Рис. 1. Электрическая схема оптоэлектронного коммутатора аналоговых сигналов

На рис. 2 показаны электрические схемы некоторых других типов оптоэлектронных микросхем. Ключевая микросхема (рис. 2, а) включает в себя быстродействующую диодную оптоэлектронную пару, согласованную с монолитным кремниевым усилителем. Она предназначена для замены трансформаторных и релейных связей в логических устройствах ЭВМ и дискретной автоматики. Аналоговый ключ (рис. 2, б) относится к линейным схемам с оптоэлектронным управлением. При мощности управляющего сигнала 60—80 мВт параметры прерывателя достигают значений, необходимых для стандартных полупроводниковых микросхем. Оптоэлектронные маломощные реле постоянного тока (рис.2, в) предназначены для замены аналоговых электромеханических реле с быстродействием в миллисекундном диапазоне и гарантируемым числом срабатываний 104—107.

Рис. 2. Электрические схемы некоторых типов оптоэлектронных микросхем: а – ключевая микросхема; б – аналоговый ключ; в – реле постоянного тока.

Рис. 3. Электрическая схема оптоэлектронных микросхем серии 249

Представляют интерес оптоэлектронные микросхемы серии 249, в которую входят четыре группы приборов, представляющих собой электронные ключи на основе электролюминесцентных диодов и транзисторов. Электрическая схема всех группприборов одинакова (рис. 3). Конструктивно микросхемы оформлены в прямоугольном плоском корпусе интегральных микросхем с 14 выводами и имеют два изолированных канала, что уменьшает габариты и массу аппаратуры, а также расширяет функциональные возможности микросхем. Светодиоды выполнены на основе кремния и имеют п+-p-ni-n+-структуру.Наличие двух каналов в ключе позволяет использовать егов качестве интегрального прерывателя аналоговых сигналов и получать высокий коэффициент передачи сигнала (10—100) при включении фототранзисторов по схеме составного транзистора.

Оптоэлектронные приборы

Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.

Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.

Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:

полной гальванической развязкой «вход – выход» (сопротивление изоляции превышает 1012 – 1014 Ом);

абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы – фотоны);

однонаправленностью потока информации, которая связана с особенностями распространения света;

широкополосностью из-за высокой частоты оптических колебаний,

достаточным быстродействием (единицы наносекунд);

высоким пробивным напряжением (десятки киловольт);

малым уровнем шумов;

хорошей механической прочностью.

По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).

В оптронных приборах применяют полупроводниковые источники излучения – светоизлучающие диоды, изготовляемые из материалов соединений группы АIIIBV, среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 – 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.

Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.

Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p-n-переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.

Основные характеристики светоизлучающих диодов видимого диапазона приведены в табл. 1, а инфракрасного диапазона – в табл. 2.

Таблица 1 Основные характеристики светоизлучающих диодов видимого диапазона

Тип диода Яркость, кд/м2, или сила света, мккд Постоянное прямое напряжение, В Цвет свечения Постоянный прямой ток, мА Масса, г
КЛ101 А – ВАЛ102 А – ГАЛ307 А – Г 10 – 20 кд/м240 – 250 мккд150 – 1500 мккд 5,52,82,0 – 2,8 ЖелтыйКрасный, зеленыйКрасный, зеленый 10 – 405 – 2010 – 20 0,030,250,25

Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды – полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала 100 – 300 мкм), оптоизоляторы (до 1 м) и волоконно-оптические линии связи – ВОЛС (до десятков километров).

Таблица 2. Основные характеристики светоизлучающих диодов инфракрасного диапазона

Тип диода Полная мощность излучения, мВт Постоянное прямое напряжение, В Длина волны излучения, мкм Время нарастания импульса излучения, нс Время спада импульса излучения, нс Масса, г
АЛ103 А, БАЛ106 А – ДАЛ107 А, БАЛ108 ААЛ109 ААЛ115 А 0,6 – 1 (при токе 50 мА)0,2 – 1,5 (при токе 100 мА)6 – 10 (при токе 100 мА)1,5 (при токе 100 мА)0,2 (при токе 20 мА)10 (при токе 50 м А) 1,61,7 – 1,921,351,22,0 0,950,92 – 0,9350,950,940,940,9 – 1 200 – 30010–400–300 50020–1000–500 0,10,50,20,150,0060,2

К фотоприемникам, используемым в оптронных приборах, предъявляют требования по согласованию спектральных характеристик с излучателем, минимуму потерь при преобразовании светового сигнала в электрический, фоточувствительности, быстродействию, размерам фоточувствительной площадки, надежности и уровню шумов.

Для оптронов наиболее перспективны фотоприемники с внутренним фотоэффектом, когда взаимодействие фотонов с электронами внутри материалов с определенными физическими свойствами приводит к переходам электронов в объеме кристаллической решетки этих материалов.