Смекни!
smekni.com

Цифровые интегральные микросхемы Микроэлектроника - (стр. 10 из 19)

.

Для составления матрицы переходов JK-триггера подставим в полученное уравнение все возможные сочетания состояний триггера

0

00=
, при любом Kи J=0,

0

11=
, при любом Kи J=1.

1

00=
, при любом Jи K=1,

1

11=
, при любом Jи K=0.

Откуда следует матрица переходов (табл. 12), которую используют при синтезе цифровых устройств на JK-триггерах. В схемном отношении JK-триггер отличается от триггеров RS-типа наличием обратных связей. Логическая структура простейшего JK-триггера показана на рис. 38.

Элементы временной задержки в данной схеме играют роль стабилизаторов состояний триггера, и непосредственно на его функциональные свойства не влияют.

В интегральной схемотехнике применяются только синхронные JK-триггеры в силу жестких требований к длительности входных сигналов для асинхронного варианта.

Рис. 38. Логическая структура JK-триггера

JK-триггеры относятся к универсальным устройствам. Их универсальность имеет двойственный характер. Во-первых, эти триггеры с равным успехом могут быть использованы в счетчиках, регистрах, делителях частоты и других электронных узлах, во-вторых, путем определенного соединения выводов они легко обращаются в триггеры других типов.

Если, например, принять J=Dи K=

, то уравнение JK-триггера примет вид:

,

что соответствует логическому уравнению D-триггера.

Для получения T-триггера достаточно объединить вход Jи Kи подавать на них входные импульсы. Это будет вариант синхронного T-триггера. В асинхронном варианте T-триггера на входы Jи Kподают сигнал логической единицы, а входные импульсы поступают на вход синхронизации (рис.39).

а б в

Рис. 39. Использование JK-триггера в качестве: а – D-триггера; б – асинхронного T-триггера; в – синхронного T-триггера

Рассмотренные JK-триггеры являются одноступенчатыми.

Однако более устойчивыми в работе являются двухступенчатые триггеры, поскольку обе ступени тактируются поочередно, что предупреждает паразитную генерацию в схеме.


6. Цифровые ФУНКЦИОНАЛЬНЫЕ УЗЛЫ ПОСЛЕДОВАТЕЛЬНОСТНОГО ТИПА

6.1 Интегральные счетчики

Счетчиком называется устройство, предназначенное для подсчета числа входных сигналов и хранения в определенном двоичном коде этого числа.

Счетчики – это цифровые автоматы, внутренние состояния которых определяются только количеством сигналов “1”, пришедших на вход. Сигналы “0” не изменяют их внутренние состояния.

Триггер Т-типа является простейшим счетчиком, который считает до двух. Счетчик, образованный цепочкой из m триггеров, сможет подсчитывать в двоичном коде 2m входных импульсов. Каждый из триггеров в этой цепочке называют разрядом счетчика.

Основная характеристика счетчика – модуль счета, или емкость счетчика Kсч.. Это количество поступивших входных сигналов, которое возвращает счетчик в исходное состояние.

Количество триггеров, необходимое для реализации счетчика, равно m = log2 Kсч., где m – ближайшее большее целое число.

Классификация счетчиков

Цифровые счетчики классифицируются следующим образом:

·по модулю счета: двоичные, двоично-десятичные или с другим основанием счета, недвоичные с постоянным модулем счета, с переменным модулем счета;

·по направлению счета: суммирующие, вычитающие, реверсивные;

·по способу организации внутренних связей: с последовательным переносом, с параллельным переносом, с комбинированным переносом, кольцевые.

Классификационные признаки независимы и могут встречаться в различных сочетаниях: например, суммирующие счетчики бывают как с последовательным, так и с параллельным переносом и могут иметь двоичный, десятичный и иной модуль счета.

В суммирующем счетчике каждый входной импульс увеличивает число, записанное в счетчик, на единицу (для счетчиков с естественным порядком счета) и на единицу и более для счетчиков с произвольным порядком счета.

Вычитающий счетчик действует обратным образом: двоичное число, хранящееся в счетчике, с каждым поступающим импульсом уменьшается. Переполнение счетчика наступает при поступлении на его вход количества импульсов большего Kсч..

Реверсивный счетчик может работать в качестве суммирующего и вычитающего. Эти счетчики имеют дополнительные входы для задания направления счета.

Счетчики могут быть как асинхронными, так и синхронными.

Последовательные счетчики

Рассмотрим работу суммирующего двоичного счетчика (K сч. = 2m) с естественным порядком счета и с K сч. = 8. Для его построения необходимо m = log2 8 = 3 триггера, что соответствует трем разрядам двоичного числа.

Таблица состояний такого счетчика имеет вид (табл. 13), причем входной сигнал xnобозначим через 1, Q3n– старший разряд, Q1n– младший разряд.

Таблица 13

xn Q3n Q2n Q1n Q3n+1 Q2n+1 Q1n+1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

Из анализа таблицы видно:

·триггер младшего разряда Q1 переключается от каждого входного сигнала;

·второй разряд Q2 переключается через два входных сигнала;

·третий разряд Q3 переключается через четыре входных сигнала.

Таким образом, частота переключения каждого следующего триггера уменьшается вдвое. Следовательно, счетчик можно построить как цепочку последовательно включенных счетных триггеров.

Построим такой счетчик на JK-триггерах, работающих в счетном режиме (рис. 40).

А

б

Рис. 40. Последовательный суммирующий счетчик на JK-триггерах – а; временная диаграмма его работы – б

Данный счетчик может работать как вычитающий. Для этого необходимо сигналы на входы последующих разрядов подавать с инверсных выходов триггеров предыдущих разрядов.

Так как полученный счетчик – асинхронный, то каждый его триггер срабатывает с задержкой относительно входного сигнала. Поэтому по мере продвижения сигнала от младшего разряда к старшему эта задержка суммируется и может произойти искажение информации, в виде несоответствие числа уже поступивших в счетчик импульсов и кода на его выходах. В общем случае суммарная задержка пропорциональна числу триггеров, что снижает быстродействие счетчика.

Счетчики с параллельным переносом

Для повышения быстродействия счетчики выполняются синхронными с параллельным переносом (или параллельными).

Их особенность заключается в том, что выходы всех предшествующих разрядов соединяются с входами триггера последующего разряда, поэтому длительность переходного процесса определяется только длительностью переходного процесса одного разряда и не зависит от количества триггеров.

Отсюда следует, что параллельные счетчики – синхронные.

Структура параллельного счетчика не столь очевидна, как структура последовательного счетчика, и для ее выявления необходима определенная процедура синтеза.

В качестве примера синтезируем двоичный параллельный счетчик с K сч. = 8.

Суммирующий счетчик. Процедура синтеза включает следующие операции:

1. Определяется необходимое количество разрядов m. В данном случае m = log2 8 = 3.

2. Строится таблица состояний счетчика. Для рассматриваемого примера возьмем таблицу 13.

3. Составляются карты Карно для функций переходов триггеров каждого разряда. Карта переходов строится по таблице состояний и отображает переход триггера Qin → Qin+1 в каждом такте в зависимости от состояний остальных триггеров в такте n (рис. 41).