Построение цифровых электронных вольтметров
По рассмотренному методу строятся вольтметры с времяимпульсным преобразованием. Принцип действия таких вольтметров основан на том, что измеряемое напряжение преобразуется в интервал времени, длительность которого измеряется методом дискретного счёта.
Рис. 3.3. Структурная схема вольтметра с времяимпульсным преобразованием
УС – устройство сравнения; ФИ – формирователь импульсов; ВС – временной селектор; СИ – счётчик импульсов; ЦОУ – цифровое отсчётное устройство; ГПН – генератор пилообразного напряжения.
Измерения происходят циклами, задаваемыми узлом управления.
Источники основных погрешностей:
1) нелинейность пилообразного напряжения и нестабильность скорости его нарастания;
2) нестабильность частоты следования счётных импульсов;
3) нестабильность порогов срабатывания компаратора;
4) конечное быстродействие формирователя импульсов;
5) наличие методической погрешности дискретности.
Основным достоинством таких вольтметров является простота реализации, а недостатками то, что вольтметры реагируют на мгновенное значение напряжения, поэтому у них низкая помехоустойчивость. На входе ставят пассивные помехоподавляющие фильтры. Однако из-за этого снижается быстродействие.
От указанных недостатков свободны интегрирующие ЦЭВ. Еще их называют вольтметрами с интегрированием «вверх-вниз», вольтметры с двойным времяимпульсным преобразованием.
Рис. 3.4. Структурная схема вольтметра с двойным времяимпульсным преобразованием
ИОН – источник опорного напряжения; И – интегратор.
Рис. 3.5. Принцип действия вольтметра с двойным времяимпульсным преобразованием
Устройство управления вырабатывает тактовые импульсы с неизменной
и обеспечивает нужное состояние компаратора, коммутатора и счётчика импульсов. При этом в течение длительности тактового импульса на первый вход коммутатора поступает постоянное измеряемое напряжение. Через коммутатор напряжение поступает на интегратор, напряжение на выходе которого определяется как .Рис. 3.6.
На выходе интегратора напряжение нарастает. Этот участок называется интегрирование «вверх». В момент окончания тактового импульса состояние коммутатора изменяется на противоположное, а на вход интегратора поступает опорное напряжение, имеющее противоположную полярность. Этот участок называется интегрирование «вниз».
Простейший способ реализации источника опорного напряжения:
Рис. 3.7.
1) в конце интервала времени
: ;2) в конце интервала времени
: ;3) в момент времени
: ; ; .Измеряемое напряжение, с точностью до константы, равно количеству счётных импульсов.
Основные погрешности:
1) погрешность дискретности;
2) погрешность преобразования, которая обусловлена нестабильностью тактовых импульсов и напряжения источника опорного напряжения;
3) погрешность сравнения, обусловленная нестабильностью порога срабатывания компаратора;
Основными достоинствами таких вольтметров являются высокая помехоустойчивость и высокая чувствительность (0.1 мкВ).
Основные недостатки – сложность схемной реализации и обеспечения заданной стабильности заданного напряжения, длительности импульса.
Для уменьшения погрешности дискретности тактовые импульсы формируют из счётных путём деления частоты.
Построение цифровых частотомеров
В измерительной технике наиболее точно измеряется частота. На сегодняшний день наиболее распространённым методом измерения частоты является метод дискретного счёта. При этом измеряемая частота сигнала
сравнивается с дискретным значением образцовой частоты , которая воспроизводится мерой.Рис. 3.8.
Результат сравнения – число
или кратность сравниваемых частот: ; .Необходимые узлы для аппаратурной реализации:
1) формирователь импульсов;
2) устройство, вырабатывающее сигнал образцовой частоты (задающий генератор);
3) устройство, формирующее импульсы длительностью
(строб-импульсы или «временные ворота»);4) устройство, сравнивающее строб-импульсы с периодом следования сигнала измеряемой частоты.
Рис. 3.9.
ВхУ – входное устройство, ФИ – формирователь импульсов, ВС – временной селектор, СИ – счётчик импульсов, ЦОУ – цифровое отсчётное устройство, ЗГ – задающий генератор, ДЧ – делитель частоты, ГМВ – генератор меток времени, УУ – устройство управления.
ВхУ преобразует сигнал по уровню, обеспечивая нормальное функционирование ФИ, который преобразует входной сигнал произвольной формы в последовательность коротких однополярных импульсов одинаковой амплитуды, следующих с частотой
. С выхода ФИ сигнал поступает на один из входов ВС, на другой вход которого подаётся строб-импульс образцовой частоты длительностью . Строб-импульс формируется из сигнала, вырабатываемого ЗГ, который представляет собой кварцевый генератор опорной частоты, с помощью делителя частоты. ДЧ представляет собой набор делителей частоты, на выходе которых обычно формируются сигналы с частотами 100 кГц, 10 кГц, 1 кГц и т.д., которые определяют соответствующие длительности строб-импульсов («временных ворот»). ЗГ вместе с ДЧ принято называть генератором меток времени (ГМВ), а длительность «временных ворот» – временем измерения.Рис. 3.10.
СИ подсчитывает количество импульсов с частотой, равной измеряемой, которые прошли через ВС за интервал времени
.Основными источниками погрешности при измерении частоты электронно-счётным частотомером являются:
- погрешность меры, где функцию меры выполняет ЗГ. Под погрешностью меры понимают нестабильность частоты ЗГ. С целью уменьшения этой погрешности, ЗГ выполняется в виде кварцевых генераторов импульсов, кроме того, ЗГ размещают в термостате. Такие меры позволяют иметь суточную погрешность (нестабильность частоты) до
.- погрешность дискретности, которая обусловлена несинхронностью двух сигналов: измеряемого и вырабатываемого ЗГ. Наличие этой несинхронности приводит к тому, что в отрезке длительностью
укладывается нецелое число периодов измеряемой частоты .В соответствии с принципом действия:
; .Из этих соотношений следует, что:
,где
- количество импульсов на выходе ВС или кратность частот.Обычно метки времени формируют из сигнала, вырабатываемого ЗГ, путём деления частоты. Тогда с учётом коэффициента деления частоты
имеем: ,