3) Последним рассмотрим датчик производства компании Falmouth FSI OEMNXICCT (Рис. 12)
Рисунок 12. Датчик FSI OEMNXICCT
Электропроводность Диапазон 0..90 mS/cм
Погрешность 0.005 mS/cm
Стабильность 0.0005 mS/cm/month
Температура: Диапазон -5..45 C
Погрешность 0.005 C
Стабильность 0.0005 C/month
Частота измерений до 5 Hz
Этот датчик, по сравнению с другими, обладает целым рядом преимуществ.
Во-первых это экран препятствующий обрастанию. Учитывая специфику области его применения, эта особенность ставит его на весьма выгодную позицию. У этого датчика очень удобная и интуитивно понятная система команд. Из всех рассмотренных датчиков, этот обладает наивысшей точностью и стабильностью и частотой измерений. Унифицированный интерфейс (подключатся по интерфейсу RS232) позволяет производить легкую настройку датчика без установки дополнительных программных средств.
Все вышеперечисленные преимущества склоняют к выбору в пользу данного датчика.
На структурной схеме устройства необходимо изображать все основные функциональные части. Структурная схема проектируемой подсистемы сбора ГФП разрабатывалась с учетом особенностей применяемого первичного преобразователя и с возможностью дальнейшей модернизации, которая заключается в подключении к устройству различных первичных преобразователей.
Структурная схема приведена ниже на рис. 13.
Рисунок 13. Структурная схема подсистемы сбора ГФП.
Датчики, входящие в состав подсистемы сбора ГФП должны соответствовать следующим характеристикам:
Датчик электропроводности / солености
Диапазон измерения | 0..90 mS/cм |
Погрешность | 0.005 mS/cm |
Стабильность | 0.0005 mS/cm/month |
Датчик температуры.
Диапазон измерения | -5..45° C |
Погрешность | 0.005° С |
Стабильность | 0.0005° C/month |
Датчик давления.
Диапазон измерения | 0–500 м |
Погрешность | 0.04% |
Флюорометр.
Диапазон измерения | 0–6000 м |
Погрешность | ±0.02μg/l |
Мутномер (Turbidity Meter)
Диапазон измерения | 0–6000 м |
Погрешность | ±0.01 NTU |
Акустический измеритель течения
Компас
Диапазон измерения | 30° |
Погрешность | 2° |
Угол наклона
Диапазон измерения | 20° |
Погрешность | 0.2° |
Скоростьтечения
Диапазон измерения | 3 м/с |
Погрешность | 1° |
Частота измерения | 1Нz |
К тому же для избегания потери данных при длительном отсутствии связи с береговым РЦ и для работы обсерватории в автономном режиме, должна осуществляться запись показаний датчиков на цифровой носитель информации.
Для разработки подсистемы сбора гидрофизических параметров необходимо было выбрать элементную базу и целый ряд периферийных компонентов.
После того, как был определен тип используемого в системе датчика и сформулированы требования к периферийным компонентам системы, начались поиски соответствующего микроконтроллера для обработки показаний датчиков и выполнения пользовательской программы.
Было найдено значительное количество схожих по своим характеристикам микроконтроллеров (PIC, Atmel), поэтому пришлось ужесточить условия поиска и отбирать микроконтроллер не только по его характеристикам, но и оценивать имеющиеся на базе этих микроконтроллеров средства разработки, которые бы максимально сокращали время и ресурсы, затраченные на проектирование собственного устройства.
В результате поиска решение было найдено на базе микроконтроллера Atmel ATmega 128. Оно представляет собой системную плату для разработчика, в которой присутствовало все необходимое для создания на ней прототипа для системной платы подсистемы сбора гидрофизических параметров. После того, как плата была модернизирована, была подготовлена принципиальная электрическая схема системной платы.
ATmega128 – маломощный 8-разр. КМОП микроконтроллер, основанный на расширенной AVR RISC-архитектуре. За счет выполнения большинства инструкций за один машинный цикл ATmega128 достигает производительности 1 млн. операций в секунду/МГц, что позволяет проектировщикам систем оптимизировать соотношение энергопотребления и быстродействия.
Рисунок 14 – Функциональная схемаЯдро AVR сочетает богатый набор инструкций с 32 универсальными рабочими регистрами. Все 32 регистра непосредственно подключены к арифметико-логическому устройству (АЛУ), который позволяет указать два различных регистра в одной инструкции и выполнить ее за один цикл. Данная архитектура обладает большей эффективностью кода за счет достижения производительности в 10 раз выше по сравнению с обычными CISC-микроконтроллерами.
ATmega128 содержит следующие элементы: 128 кбайт внутрисистемно программируемой флэш-памяти с поддержкой чтения во время записи, 4 кбайт ЭСППЗУ, 4 кбайт статического ОЗУ, 53 линии универсального ввода-вывода, 32 универсальных рабочих регистра, счетчик реального времени (RTC), четыре гибких таймера-счетчика с режимами сравнения и ШИМ, 2 УСАПП, двухпроводной последовательный интерфейс ориентированный на передачу байт, 8-канальный 10-разр. АЦП с опциональным дифференциальным входом с программируемым коэффициентом усиления, программируемый сторожевой таймер с внутренним генератором, последовательный порт SPI, испытательный интерфейс JTAG совместимый со стандартом IEEE 1149.1, который также используется для доступа к встроенной системе отладке и для программирования, а также шесть программно выбираемых режимов уменьшения мощности. Режим холостого хода (Idle) останавливает ЦПУ, но при этом поддерживая работу статического ОЗУ, таймеров-счетчиков, SPI-порта и системы прерываний. Режим выключения (Powerdown) позволяет сохранить содержимое регистров, при остановленном генераторе и выключении встроенных функций до следующего прерывания или аппаратного сброса. В экономичном режиме (Power-save) асинхронный таймер продолжает работу, позволяя пользователю сохранить функцию счета времени в то время, когда остальная часть контроллера находится в состоянии сна. Режим снижения шумов АЦП (ADC Noise Reduction) останавливает ЦПУ и все модули ввода-вывода, кроме асинхронного таймера и АЦП для минимизации импульсных шумов в процессе преобразования АЦП. В дежурном режиме (Standby) кварцевый / резонаторный генератор продолжают работу, а остальная часть микроконтроллера находится в режиме сна. Данный режим характеризуется малой потребляемой мощностью, но при этом позволяет достичь самого быстрого возврата в рабочий режим. В расширенном дежурном режиме (Extended Standby) основной генератор и асинхронный таймер продолжают работать.
Микроконтроллер производится по технологии высокоплотной энергонезависимой памяти компании Atmel. Встроенная внутрисистемно программируемая флэш-память позволяет перепрограммировать память программ непосредственно внутри системы через последовательный интерфейс SPI с помощью простого программатора или с помощью автономной программы в загрузочном секторе. Загрузочная программа может использовать любой интерфейс для загрузки прикладной программы во флэш-память. Программа в загрузочном секторе продолжает работу в процессе обновления прикладной секции флэш-памяти, тем самым поддерживая двухоперационность: чтение во время записи. За счет сочетания 8-разр. RISC ЦПУ с внутрисистемно самопрограммируемой флэш-памятью в одной микросхеме ATmega128 является мощным микроконтроллером, позволяющим достичь высокой степени гибкости и эффективной стоимости при проектировании большинства приложений встроенного управления.
ATmega128 поддерживается полным набором программных и аппаратных средств для проектирования, в т.ч.: Си-компиляторы, макроассемблеры, программные отладчики / симуляторы, внутрисистемные эмуляторы и оценочные наборы.
Для записи показаний датчиков был выбран тип флеш-памяти SD.
Это обусловлено:
· размером флеш-памяти;
· низким энергопотреблением;
· низкой стоимостью носителей;
· способом записи (SD – карты имеют встроенный контроллер, который производит обнаружение и исправление ошибок и старается равномерно использовать ресурс перезаписи флеш-памяти).
Микроконтроллер Atmel AVRMega 128 (МК) управляет по заданной пользователем программе, сбором и обработкой данных с CTD, флюориметра, турбидиметра, акустического измерителя течения, а также с аналоговых каналов. МК сохраняет данные с датчиков на флэш-память и по заданной программе выполняет передачу данных по интерфейсу RS-485, если обсерватория работает в кабельном варианте.
Алгоритм работы схематически представлен на рис. 15
Рисунок 15. Алгоритм работы подсистемы сбора ГФП
Было разработано программное обеспечение для микроконтроллера. Оно позволяет проводить гибкую настройку обсерватории в зависимости от применяемых датчиков, работе в автономном режиме или в кабельном варианте. Пользователь может задавать различную частоту опроса датчиков, в зависимости от временных условий, поступающих от датчиков значений или градиента значений. При работе в кабельном варианте возможно удаленное управление и программирование.