Смекни!
smekni.com

Последовательные правила различения сложных гипотез (стр. 2 из 2)

Последовательная процедура с независимыми решениями продолжается до тех пор, пока не завершится наблюдение во всех каналах, поэтому ее длительность совпадает с длительностью процедуры в канале, где решение было принято последним. Поскольку решение в каждом канале по условию выносится независимо, вероятность

завершения такой
канальной процедуры к некоторому
шагу равна произведению вероятностей завершения шагу процедур во всех каналах:
, где
функция распределения длительности последовательной процедуры в
канале. Поскольку по определению
, величина
есть убывающая функция числа сомножителей
, иными словами, с ростом
вероятность незавершения многоканальной процедуры увеличивается.

Математическое ожидание

дискретной величины
связано с ее функцией распределения соотношением:

.

Очевидно, что с ростом

(уменьшением
) средняя длительность последовательной процедуры
возрастает.

На рис.7.2. приведены полученные методом математического моделирования зависимости средней длительности последовательной процедуры от числа каналов

при наличии и отсутствии в них сигналов. Для сравнения там же приведена аналогичная зависимость для процедуры Неймана-Пирсона. Из рисунка видно, что для последовательной процедуры возрастает только связанная с порогом
длительность обнаружения
, но и не зависящая от
длительность
наблюдения в каналах, не содержащих сигнал, причем с ростом числа каналов именно этот эффект становится определяющим (при увеличении
кривая
стремится к
). При этом длительность последовательной процедуры возрастает гораздо быстрее, чем для процедуры Неймана-Пирсона, и существует число каналов
, при превышении которого последовательная процедура с независимыми решениями не только перестает давать экономию в длительности наблюдения, но и приводит к потерям.

Таким образом, процедура с независимыми решениями, достаточно близкая к оптимальной при фиксированном объеме выборки, оказывается малоэффективной или просто неприемлемой для последовательных правил, что подтверждает ранее высказанную мысль о том, что механический перенос на последовательные правила квазиоптимальных решений, полученных в классе правил с фиксированным объемом выборки, может привести к обескураживающим результатам и ошибочным выводам.

В частности, в ряде статей, опубликованных в начале 60-х годов, низкая эффективность последовательной процедуры с независимыми решениями послужила основанием для вывода о неприменимости методов последовательного анализа в системах с высоким разрешением, в том числе, радиолокационных, хотя на самом деле этот вывод справедлив лишь по отношению к вполне конкретной и заведомо неоптимальной процедуре.

7.4. Последовательные процедуры с зависимыми решениями.

Причина низкой эффективности последовательной процедуры с независимыми решениями состоит в том, что время, затрачиваемое на завершение эксперимента в тех каналах, где он затянулся, не используется для уточнения решений, принятых в остальных каналах. Более эффективны алгоритмы, в которых решение о прекращении наблюдения в каждом канале выносится на основании анализа совокупности значений решающей статистики

во всех каналах. При этом становится возможным возврат статистики, пересекшей в каком либо канале порог, в зону неопределенности и последующий повторный выход статистики за порог, поэтому итоговая вероятность ошибок в таких процедурах ниже, чем при независимых решениях. Процедуры рассматриваемого типа иногда называют “процедурами с многократными пересечениями порогов”; примерами могут служить процедура на экстремальной статистике, а также процедура с одновременным решением.

Процедура на экстремальной статистике применима в тех случаях, когда гипотеза

предполагает наличие единственного сигнала в каком-либо канале. Согласно этой процедуре, накопление парциальной решающей статистики во всех каналах продолжается до тех пор, пока максимальное из этих значений
не пересечет один из решающих порогов. При пересечении верхнего порога принимается решение о наличии сигнала в том канале, где получено значение
, нижнего – об отсутствии сигналов во всех каналах. Очевидно, что пока экстремальная статистика находится в зоне неопределенности, пересечение нижнего порога в любом другом канале не может привести к принятию гипотезы
, как следствие, снижается вероятность пропуска. Поэтому, для обеспечения заданной вероятности пропускав данной процедуре необходима меньшая ширина зоны неопределенности, соответственно, и меньшая средняя длительность наблюдения, чем для процедуры с независимыми решениями. Однако расчет оптимального нижнего порога, обеспечивающего в данной процедуре требуемую вероятность пропуска, оказывается достаточно сложным, что наряду с невозможностью обнаружения более чем одного сигнала снижает ее практическую ценность.

Развитием рассмотренной процедуры на случай обнаружения произвольного числа сигналов

является процедура, согласно которой накопление статистики в каждом канале продолжается до шага, на котором статистика во всех каналах одновременно окажется вне зоны неопределенности, (отсюда название – “процедура с одновременным решением”). Очевидно, что условие выхода за нижний порог всех парциальных статистик тождественно условию выхода за этот порог максимальной из них, т.е. с точки зрения принятия гипотезы
процедуры на экстремальной статистики с одновременным решением эквивалентны. Различие состоит в том, что в последнем случае возможен возврат в зону неопределенности статистики, пересекшей не только нижний, но и верхний порог, что снижает вероятность ложной тревоги, и позволяет при заданных значениях вероятностей ошибок, дополнительно уменьшить размер зоны неопределенности и среднюю длительность последовательной процедуры. Однако расчет оптимальных значений решающих порогов при этом еще более усложняется.