В более общем случае это свойство отношения правдоподобия может нарушаться, однако и в этом случае квазиоптимальные алгоритмы часто используют статистику отношения правдоподобия.
Можно также показать, что в случае различения простых гипотез полученная структура обнаружителя – “вычислитель отношения правдоподобия + постоянный порог” - является оптимальной не только весового критерия, но и для других, рассмотренных нами: Неймана-Пирсона, максимума апостериорной вероятности, максимального правдоподобия, минимаксного. Различие этих критериев выражается только в величине порога
.Очевидно, что для рассмотренной структуры решающего правила его оптимальность не нарушится, если отношение правдоподобия заменить любой монотонной однозначной функцией от него (при условии соответствующего пересчета значения решающего порога). Часто в качестве такой функции используют логарифм отношения правдоподобия
. Переход к этой статистике удобен при независимых выборках, когда функции правдоподобия факторизуется. При этом , соответственно , т.е. при вычислении решающей статистики операция умножения заменяется существенно более простой операцией суммирования.Самостоятельную роль в теории принятия статистических решений играет математическое ожидание логарифма отношения правдоподобия
(информация Кульбака-Леблера). Величина может служить количественной мерой статистического “расстояния” между различаемыми распределениями. Смысл этой величины достаточно нагляден: чем больше площадь перекрытия одномерных функций правдоподобия и , тем ближе к нулю (в среднем) логарифм отношения правдоподобия и наоборот, чем меньше площадь перекрытия кривых , тем большую модуль информация Кульбака-Леблера. Величина может интерпретироваться как среднее приращение статистики на один элемент выборки (шаг наблюдения) в процессе ее накопления, поэтому средний объем выборки, необходимый для вынесения решения с заданными вероятностями ошибок a и b, обратно пропорционален этой величине (подробнее см. следующие разделы).Необходимо подчеркнуть. Что операция расчета логарифма отношения правдоподобия может реализовываться с помощью устройств согласованной фильтрации (известно, что выходной эффект фильтра, согласованного с наблюдаемой выборкой, пропорционален логарифму отношения правдоподобия этой выборки). На практике оптимальная обработка выборки обычно разделяется на два этапа: согласованную фильтрацию одиночногосигнала и расчет отношения правдоподобия для последовательностиотсчетов, наблюдаемых на выходе согласованного фильтра. Поэтому мы под формированием решающей статистики будем понимать расчет отношения правдоподобия (или его логарифма) для выборки, наблюдаемой навыходефильтра (коррелятора) согласованного с одиночным сигналом.
2.3. Расчет отношения правдоподобия для простых гипотез.
Проведем расчет отношения правдоподобия при простых гипотезах, когда соответствующие функции правдоподобия
; не содержат неизвестных параметров. Рассмотрим случай обнаружения сигнала с известной амплитудой и начальной фазой . (Для радиолокации этот случай является идеализированным, т.к. соответствует обнаружению цели с известной ЭПР, находящейся на известной дальности и обладающей известной радиальной скоростью. Однако такая модель сигнала наиболее наглядна, а также служит исходной для других, более сложных моделей, рассматриваемых ниже.)В качестве помехи, присутствующей на выходе оптимального приемника будем рассматривать узкополосный гауссовский шум, среднеквадратическое отклонение которого s также считается известным. Для удобства будем рассматривать амплитуды принятого и расчетного сигналов, нормированные относительно с.к.о. шума:
; .Известно, что оптимальный фильтр такого сигнала представляет собой коррелятор, на опорный вход которого подается полная (с точностью до начальной фазы
) копия ожидаемого сигнала. Напряжение на выходе коррелятора описывается совокупностью отсчетов его огибающей и фазы относительно опорного гармонического колебания, синфазного с сигналом.Соответствующие гипотезам
и совместные плотности распределения отсчетов огибающей и фазы для выборки, содержащей пар отсчетов, можно записать в виде: (2.1) (2.2).Соответственно, отношение правдоподобия и его логарифм
, .Последнее выражение определяет функциональное преобразование, которому должны подвергаться отсчеты амплитуды и фазы на выходе согласованного фильтра при расчете логарифма отношения правдоподобия выборки (
).На практике для удобства в качестве выходного эффекта оптимального фильтра обычно рассматривают напряжение на выходе амплитудно-фазовогодетектора
.Очевидно, что в этом случае
. (3.3)Рассчитаем математическое ожидание статистики (2.3), т.е. ее среднее приращение (информацию Кульбака-Леблера), приходящееся на один отсчет
.Используя известную формулу плотности вероятности произведения двух случайных величин, нетрудно убедиться, что при наличии сигнала величина
имеет нормальное распределение: (2.4)мат. ожидание которого
, а дисперсия . При нулевой гипотезе ( ) мат.ожидание , дисперсия не меняется. Поскольку преобразование (2.3) линейно относительно можно утверждать, что распределение решающей статистики также нормально с параметрами: ; ; (2.5)Таким образом, для полностью известного сигнала абсолютная величина информации Кульбака-Леблера при гипотезе и альтернативе одинакова и равна квадрату эффективного значения
.