Смекни!
smekni.com

Структура оптимальных устройств обнаружения (стр. 1 из 2)

2. Структура оптимальных устройств обнаружения.

2.1. Весовой критерий; критерий Неймана-Пирсона.

На практике вместо совместных вероятностей

часто пользуются условными вероятностями

- вероятность правильного обнаружения;

- вероятность пропуска сигнала;

- вероятность ложной тревоги;

- вероятность правильного необнаружения.

Поскольку решения, соответствующие одному и тому же условию являются взаимоисключающими, справедливы равенства

;
.

Таким образом, можно записать:

где

- весовой множитель;

- вероятность наличия полезного сигнала;

- вероятность его отсутствия.

Очевидно, что при любых

и
минимум
соответствует максимуму разности
, поэтому критерий минимума среднего риска может быть заменен эквивалентным ему весовым критерием:
. Оптимизация по этому критерию означает, что при стремлении к максимизации
и минимизации
совокупный эффект следует оценивать с весовым множителем
, зависящим от цен ошибок и априорных вероятностей наличия и отсутствия целей.

При сравнении оптимального решающего правило с любым другим справедливо неравенство

или
, откуда следует, что при
;
. Это означает, что среди всех правил, для которых вероятность ложной тревоги не больше заданной, оптимальной по весовому критерию обнаружитель обеспечивает максимальную вероятность правильного обнаружения. Существенно, что поскольку весовой коэффициент
по определению положителен, вышеуказанное неравенство справедливо при любых значениях априорных вероятностей и стоимостей ошибок.

Описанный весовой критерий, являющийся видоизменением байесовского, но не требующий знания априорных вероятностей наличия и отсутствия сигнала и стоимости ошибок, широко используется при анализе и синтезе систем обнаружения и носит название критерия Неймана-Пирсона. Решающее правило, оптимальное по этому критерию, соответственно именуют правилом Неймана-Пирсона.

Наряду с критерием Неймана-Пирсона находит применение ряд других критериев.

При неизвестных априорных вероятностях

и
часто за оптимальное принимают решающее правило, обеспечивающее минимум из двух значений условного риска, соответствующих состояниям
и
:
или
(минимаксный критерий).

При известных

и
, но невозможности обосновать стоимости ошибочных решений пользуются критерием максимума апостериорной вероятности, т.е. отдают предпочтение гипотезе, апостериорная вероятность которой выше.

Если неизвестны и стоимости ошибок и априорные вероятности, применяют критерий максимального правдоподобия; в соответствии с этим критерием выбирается гипотеза, для которой больше условная вероятность функция правдоподобия наблюдавшейся выборки

или
.

Важно подчеркнуть, что перечисленные критерии не противоречат, а дополняют друг друга, более того, во многих практически важных случаях оптимизация по любому из этих критериев приводит к одной и той же структуре решающего правила.

2.2. Структура оптимального решающего правила.

Рассмотрим структуру правила, оптимального по весовому критерию ( под структурой решающего правила понимается последовательность математических и логических операций , которые необходимо выполнить над выборочными значениями

, чтобы вынести требуемое решение).

В соответствии с весовым критерием мы должны найти правило, обеспечивающее выполнение условия

,где
- весовой множитель.

Запишем вероятности

и
в виде

;
.

Здесь

- многомерные плотности вероятности (функции правдоподобия) выборки
при наличии и отсутствии сигнала (обратите внимание на различие в обозначениях дифференциала
и решающего правила
).

Весовой критерий при этом может быть представлен в виде

, где
- отношение правдоподобия выборки
.Чтобы выполнить условие максимума интеграла, достаточно за счет соответствующего выбора решающей функции
добиться для каждого из возможных значений
наибольшего значения подынтегральное выражения. Эта функция в нашем случае принимает только два значения: 0 и 1, так что подынтегральное выражение либо обращается в нуль, либо умножается на единицу. Следовательно, максимум интеграла достигается, если для положительных значений подынтегрального выражения принимать
, а для отрицательных
- т.е.

Таким образом, оптимальный в смысле весового критерия обнаружитель представляет устройство вычисления отношения правдоподобия наблюдаемой выборки и сравнения его с фиксированным порогом

.

Отношение правдоподобияя, т.е. отношение функций правдоподобия

, показывающее, какую из двух взаимоисключающих гипотез (ситуаций) -
или
следует считать более вероятной, играет фундаментальную роль втеории различения статистических гипотез, поскольку представляет важнейший случай решающей статистики.

Решающей статистикой (не путать со статистикой, как областью математической и экономической наук) называют функцию выборочных значений, размерность которой меньше, чем у исходной выборки. Очевидно, что чем меньше размерность решающей статистики, тем проще ее использовать для построения решающего правила. Наилучшей с этой точки зрения является одномерная статистика, например, выборочное среднее

или выборочные моменты более высоких порядков. Однако сокращение размерности (редукция) выборочных данных не должно приводить к потере содержащейся в выборке полезной информации, на основании которой решается задача различения статистических гипотез. Статистика, обладающая таким свойством, называется достаточной; среди достаточных статистик наибольший интерес представляет минимальная достаточная статистика, т.е. статистика минимальной размерности, при которой свойство достаточности еще сохраняется. Доказано, что в том случае, когда элементы выборки
как при гипотезе, так и при альтернативе статически независимы, отношение правдоподобия является минимальной достаточной статистикой при различении простых гипотез. (Напомним, что необходимым и достаточным условием независимости выборочных значений является факторизация функций правдоподобия, т.е. возможность их представления в виде
).