Для дискретной формы системы (F, G, C) из пункта 3. 1. провести реализацию системы.
Запишем систему в виде:
Подавая импульс по первому входу, рассчитаем:
Теперь имея экспериментальные данные, сгруппировав их в матрицы H и H1 можем приступить к их обработки.
Из собственных векторов от (
) и ( ) построим:Для проверки идентификации найдем коэффициент передачи системы
Коэффициент передачи, вычисленный по исходным матрицам
Можно сделать вывод о том, что система идентифицирована, верно
1.4.2 Пассивная идентификация
Для дискретной формы системы (F, G, C) из пункта 3. 1. провести пассивную идентификацию системы, предполагая, что вектор входа изменяется соответственно таблице:
Таблица 7 Значение вектора входа для пассивной идентификации.
Такт, n | 0 | 1 | 2 | 3 | 4 | 5 |
U(n) | 0.01 | 0 | 0 | 0.04 | 0 | 0 |
0 | 0.01 | 0.02 | 0 | 0.03 | 0 |
Используя матрицы системы в дискретной форме для заданных значений вектора входа, рассчитаем значения вектора выхода
Результаты расчета сведем в таблицу:
Такт, n | 1 | 2 | 3 | 4 | 5 | 6 |
y(n) | 0.003935 | 0.006321 | 0.012 | 0.023 | 0.026 | 0.016 |
-0.0026 | 0.022 | 0.053 | 0.0091 | 0.071 | 0.026 |
Используя данные эксперимента (Таблица 8) можем приступить непосредственно к определению параметров идентифицированной системы
Тогда
Для проверки идентификации найдем коэффициент передачи системы
Система идентифицирована, верно
2. Конструирование многомерных регуляторов, оптимизирующих динамические свойства агрегата
2.1 Конструирование П. - регулятора, оптимизирующего систему по интегральному квадратичному критерию
Регулятор состояния, который оптимизирует систему по критерию:
Определяется по соотношениям:
P=LR1(A,B,Q,R);
При этом Q=R=IТ.к. матрица С. является инвертированной, для образования регулятора выхода нет необходимости конструировать наблюдатель состояния – недосягаемое состояние просто вычисляется по формуле
.Следовательно, регулятор выхода имеет вид
2.2 Конструирование компенсаторов заданий и измеряемых возмущений
Обозначивши через z заданное значение выхода y и припуская, что
, получимПриняв во внимание, что А=В
Если при компенсации возмущений и заданий учесть «стоимость» управления, записавши критерий в виде
,то компенсаторы (оптимальные) определяются зависимостями
Значение выхода при действии возмущения f в системе без компенсаторов при z=0
а также с оптимальным компенсатором.
2.3 Конструирование регулятора с компенсатором взаимосвязей
Проверим, или регулятор действительно расцепляет систему, т.е. матрица передаточных функций является диагональной
Используя V как новый вход можно далее записать
Регулятор выхода можно записать в виде
2.4 Конструирование апериодического регулятора
Апериодический регулятор для дискретной системы может быть получен: из условия
. Запишем2.5 Конструирование децентрализованного регулятора
Используя форму Ассео, запишем: