То есть аа=0.0081; bb=0.0289; cc=0.004.
Подставляя значения, полученные в пункте 2.6
в уравнение Scherzinger найдем из нее новую матрицу
Т.к. определенная матрица положительно определенная
то сконструированная система робастная поэтом стационарная и при изменении параметров в расчетных диапазонах величина критерия изменяется очень мало.
3.6 Решение обратной задачи конструирования
Записав расцеплояющей регулятор в виде
Далее используя соотношение
где W – произвольная матрица выбирается из условия S>0
В конечном счете, получаем
4. Результат вспомогательных расчетов
1.Решение уравнения Риккати первого типа
Заданы матрицы
Сформируем матрицу М
Найдем ее собственные значения
Выполним преобразование подобия
Решение уравнения Риккати
2.Решение уравнения Ляпунова
3. Вычисление матричной экспоненты
4.Опеделение Фробениусовой матрицы
5. Определение Вандермодовой матрицы
Выводы
Исследован технический объект – смесительный бак. Получен спектр модели: линейная, нелинейная, экспериментальная и аналитическая модель. Проведены эквивалентное аппроксимационое преобразование модели агрегата
Исследованы качественные и количественные свойства системы. Разработаны регуляторы управления объектом: П. – регулятор;
апериодический регулятор; надежный регулятор; блочно – иерархический регулятор; регулятор для билинейной и для нелинейной модели; программный регулятор; регулятор с компенсатором взаимосвязей. А также компенсаторы возмущений и компенсаторы на задании.
Проанализированы процессы в сконструированной системе с регулятором в качественном и количественном отношении (построен процесс в системе с регулятором, вычислен критерий оптимальности, проанализирована робастность, решена обратная задачи конструирования ).
На основании данного анализа можно сделать вывод о том, что наиболее подходящим регулятором для рассмотренной системы является оптимальный П. – регулятор. Хотя он и обладает некоторым перерегулированием, имеет небольшую статическую ошибку (при отсутствии компенсатора на задание), однако все эти недостатки компенсируются его простотой в установке и обслуживании. Помимо этого он обладает наименьшим временем переходного процесса, неплохим показателем критерия оптимальности. В силу своей простоты он является более надежным в том плане, что вероятность выхода из строя самого регулятора мала.
Литература
1. Стопакевич А.А., Методические указания к практическим занятиям по курсу « Основы системного анализа и теория систем » для бакалавров по автоматики. – Одесса: ОНПУ, 1997.
2. Стопакевич А.А. Сложные системы: анализ, синтез, управление. – Одесса: ОНПУ 2004