Смекни!
smekni.com

Структурный синтез перестраиваемых arc-схем. (стр. 2 из 4)


(15)

, (16)

где

,
– комплексный коэффициент передачи с выхода i-го (j-го) ОУ к нагрузке;
,
– эквивалентная спектральная плотность мощности источников шумовой модели i-го (j-го) ОУ;
– границы диапазона рабочих частот W.

Таким образом, мерой динамического диапазона схемы для идентичных ОУ является произведение

(17)

которое в процессе синтеза необходимо минимизировать в диапазоне частот W или, если это возможно (например, для узкополосных устройств и звеньев второго порядка), в некоторой особой точке

.

Учет влияния параметров активных элементов на обобщенную структуру производится через матрицу

(18)

вытекающую из системы (1).

Воспользовавшись методом пополнения [87] при обращении этой матрицы, можно установить, что чувствительность

динамический диапазон частотный интеграторный


(19)

определяет влияние i-го (j-го) ОУ на верхний и нижний уровни динамического диапазона схемы, причем

следуют из соотношений (8) при

(20)

(21)

и являются передаточными функциями системы при подаче сигнала на неинвертирующие входы ингеграторов и масштабных усилителей.

Передаточные функции на выходе i-го интегратора Fst (р) и j-го масштабного усилителя Fkj(р) являются компонентами векторов Fs и Fk и, следовательно, определяются из (8), когда

(22)

или

. (23)

Для вычисления полиноминальных коэффициентов Hi(p), Hj(p), Fsi(p), Fkj(p) можно воспользоваться алгоритмом (13) с учетом приведенных выше соотношений.

Таким образом, как это следует из (19), (17) и (14), уменьшение влияния i-го (j-го) ОУ на нижний уровень динамического диапазона без изменения его верхней границы возможно либо уменьшением модуля чувствительности передаточной функции при условии, что максимальное входное напряжение на его входе не меньше максимального напряжения в других узлах схемы, т.е. когда

(24)

либо увеличением этого отношения до уровня

при неизменной чувствительности.

3. Частотные свойства перестраиваемых ARC-схем

Площади усиления ОУ, входящих в состав интеграторов и масштабных усилителей, не только изменяют коэффициенты передаточной функции, но и повышают ее порядок, что в свою очередь искажает ожидаемые характеристики устройства. Для учета этого эффекта воспользуемся (m+n) раз методом пополнения для обращения матрицы (18). В этом случае

(25)

не содержит составляющих, обратно пропорциональных произведениям площадей усиления ОУ, влияние которых на частотные характеристики, как правило, мало.

Тогда

(26)

(27)

где Li(р), Lj(p) являются передаточными функциями системы на выходе i-го, j-ro ОУ при передаче сигнала на выход i-го интегратора или j-ro масштабного усилителя через компоненты векторов (20) и (21). Вычисление этих функций производится по соотношениям (8) – (11) и алгоритму (13) при

(28)

(29)

Таким образом, для получения поправочных полиномов числителя и знаменателя достаточно знать набор локальных передач Li(p), Lj(p), Hi(p), Fsi(p), Fkj(p) устройства, которые являются необходимыми для полного анализа схемы.

4. Процедура синтеза интеграторных структур

Аналогично поиску структур ARC-cxeм с фиксированными параметрами построение интеграторных схем базируется на соотношениях (2) – (4) и сводится к выбору компонент матриц Вss, Вks, Bsk, Вkk, векторов Ts, Tk, As, Ak. В п. 1 отмечалось, что матрицы Bks, Bsk, Bkk отображают функциональные связи, характерные для сумматоров и устройств масштабирования. Если предположить возможность реализации этих устройств в виде идеализированных блоков с произвольным численным значением локальных передач, то, как это видно из (1)

С => Bss; р{

} = sIn; Аk = 0; Тk = 0, (30)

что приводит к описанию структуры по методу пространства состояний [2], в рамках которого применима процедура непосредственного интегрирования. Настоящий предельный переход позволяет существенно упростить процедуру синтеза идеализированных структур как с фиксированными, так и переменными параметрами. Продемонстрируем простейший алгоритм построения идеализированной принципиальной схемы.

На рис. 3 показана структура звена второго порядка, следующая из метода непосредственного интегрирования.

Рис. 3. Исходная структура звена второго порядка

На первом этапе сумматоры заменяются их реализациями на операционных усилителях с произвольными локальными коэффициентами передачи, а на втором осуществляется замена интегрирующих блоков на интеграторы либо с фиксированными, либо с управляемыми параметрами. В этом случае компоненты матрицы С могут принимать любые наперед заданные значения. Из принципиальных схем базисных структур видно, что полученная в результате таких преобразований схема будет иметь большее число степеней свободы и, следовательно, позволит без дополнительных активных элементов образовать в рамках предложенного принципа собственной компенсации контуры обратных связей. Принципиальная схема такого звена показана на рис. 4.


Рис. 4. Универсальное звено второго порядка

с масштабной перестройкой

Поясним процедуру поиска этих контуров на конкретном примере. В схемотехнике перестраиваемых ARC-устройств частотной селекции осо-бое место занимают звенья второго порядка, являющиеся основой не только каскадных, но и многопетлевых реализаций [2]. Если для звеньев второго порядка характеристический полином

(31)

под действием площади усиления получит абсолютное приращение

(32)

то относительные изменения частоты

и затухания
полюса будут иметь вид

(33)

Тогда для компенсации влияния коэффициентов

на параметры схемы необходимо, чтобы контуры вводимых обратных связей характеризовались возвратными отношениями

(34)

или

(35)

где n и m – количество интеграторов и масштабных усилителей в схеме,

– коэффициенты, принимающие в процессе проектирования различные значения.

Для вычисления коэффициентов, входящих в (34) и (35), осуществляется их сопоставление с

, после чего в каждом конкретном случае может быть определен необходимый вид передаточной функции, реализуемой на выходах интеграторов и масштабных усилителей со специально созданных входов схемы. Вытекающие из (34) и (35) функ-циональные признаки и правила построения схем приведены в табл. 2. Приведенные во второй части табл. 3 варианты компенсации относительного изменения затухания полюса за счет изменения коэффициента
не противоречат принципу расширения динамического диапазона. Для любого i-го (j-го) ОУ