Смекни!
smekni.com

Математические основы теории систем (стр. 1 из 2)

Саратовский Государственный Технический Университет

Балаковский Институт Техники Технологии и Управления

Кафедра:

Специальность:

Курсовая работа

МОТС

Выполнил:

Принял:

Балаково 2009г.


I-часть

Задание1: По виду электрической схемы построить математическую модель объекта управления в пространстве состояния.

Задание2: По построенной модели составить структурную схему и сигнальный граф.

Задание3: Используя формулу Мейсона найти передаточную функцию объекта управления.

Задание4: По передаточной функции объекта управления определить временные и частотные характеристики. Построить их зависимость: АЧХ, ФЧХ.

Задание5: По полученным зависимостям определить прямые и косвенные оценки качества объекта управления.

II-часть.

Задание1: По заданной корреляционной функции Kx(t) определить спектральную плотность Sx(w) для белого шума, который подается на вход формирующего фильтра.

Задание2: По заданным статистическим характеристикам Se,Sv определить передаточную функцию формирующего фильтра y(р)

Задание3: Представить объект управления в виде

V(t) X(t) Y(t)

и оценить качество полученной системы по переходной характеристике.

Задание4: Сделать вывод по работе.


I-часть

Данные
R1 R2 R3 R4 L1 L2 C2 I2
Ом Гн. 10-6Ф ?
328 395 118 215 24 24 19605

L1 e(t) L2

1. Построить математическую модель объекта управления в пространстве состояния.

В схеме три элемента, запасающих энергию:

, следовательно, математическая модель должна быть третьего порядка.

2. Построение математической модели.

Задаемся направлением контурных токов

. Составляем три уравнения по второму закону Кирхгофа для контуров:

(1)

(2)

(3)

В уравнении (3) есть интеграл, поэтому дифференцируем его:

(3*)

В уравнениях (3*), (2), (3) есть производные, в качестве

выбираем элементы с производными и производные берем на порядок ниже:

(4)

(5)

(6)

Запишем введенный вектор состояния в виде дифференциальных уравнений первого порядка.

Уравнение в пространстве состояний записывается в левой части:

В полученных уравнениях имеется шесть переменных

. Необходимо уйти от
, выразив их через

Из выражения (1) выразим

:

Получили три дифференциальных уравнения и одно уравнение для выходного параметра.

Запишем полученную систему уравнений в матричном виде:

Получим матричное уравнение для выходной переменной:

2. Построение сигнального графа.

Перепишем уравнения в общем, виде для построения графа системы:


Построение графа произведем в два шага:

Шаг 1. Ставим точки входа, выхода системы

и векторы параметров

Шаг 2. Соединяем все параметры связями согласно системе уравнений.


Построим структурную схему.


eX3X3X2X2i2

X 1 X 1


3) Нахождение передаточной функции по формуле Мейсона.

k-количество возможных путей от входа к выходу

-определитель графа

Pk-коэффициент передачи k пути от входа к выходу

-определитель всех касающихся контуров при удалении k-ого пути

=1-(сумма коэффициентов передачи всех отдельных контуров)+(сумма всевозможных произведений из двух некасающихся контуров) - (сумма всевозможных комбинаций из трех некасающихся контуров)+…+…

Последовательность нахождения w(p) по формуле Мейсона:

1) В данном случае есть 1 путь от входа к выходу:

2) В системе имеется 4 замкнутых контуров:

3) Определитель системы включает 4 контура и 2 пары некасающихся контуров L1,L2; L1,L4

4) Количество сомножителей равно количеству прямых путей. Выражение для

записывается как выражение для
, но разрываются контуры, через которые проходит прямой путь Pi.

Сомножитель

для первого пути. При размыкании первого пути 2 контура размыкаются, кроме L2,L4

5) Запишем и преобразуем выражение передаточной функции:

Найдем переходную функцию и построим ее график: