Смекни!
smekni.com

Двоично-ортогональные системы базисных функций (стр. 2 из 2)


0 1 t

Рис . 3. Аппроксимация функции x(t)=at рядом Уолша – Пэли

4. Дискретное преобразование Уолша

Дискретное преобразование Уолша (ДПУ) производится при использовании дискретных функций Уолша Wa(i/N) Þ Wal(n, Q) и выполняется над решетчатыми сигналами x(i) , при этом число отсчетов N должно быть двоично -рациональным, т. е. N = 2n , где n = 1, 2,... , i - определяет номер точки дискретного интервала определения a = 0, 1,..., N-1.

Формулы дискретного ряда Уолша имеют вид:

,(9)

где дискретный спектр Уолша

. (10)

Для проверки правильности расчета спектральных коэффициентов может быть использовано равенство Парсеваля:

(11)

График дискретной функции Уолша, упорядоченных по Пели приведен на рис.


W0

012 3 4 5 6 7i

W1

W2


W3

W4

W5

W6

W7


Рис. 4 График дискретной функции Уолша

Для ускорения дискретных преобразований Уолша используются алгоритмы быстрого преобразования Уолша (БПУ) аналогичного БПФ.

БПУ также производится прореживанием по времени и частоте.

Применение преобразований Уолша. Преобразования Уолша находят широкое применение при:

- построении цифровых фильтров;

- исследовании систем автоматического управления (моделировании, оптимизации, идентификации и т. д.);

- формировании сигналов;

- анализе и синтезе логических устройств (в теории цифровых автоматов).

Пример 2. Найти спектр Уолша - Пэли для дискретного сигнала

x(i) = i, N = 8, i = 0, 1, ...,7.

Используя формулу для Caпри N=8, в соответствии с графиком дискретной функции Уолша , приведенной на рис. 4, можно найти спектр Уолша (таб. 3).

Таблица 3

Значения функций и спектральныхкоеф. при значениях индексов i и a
0 1 2 3 4 5 6 7
x(i)=i 0 1 2 3 4 5 6 7
Ca 3,5 -2 -1 0 -0,5 0 0 0

Список литературы

1. Коганов А.В. Векторные меры сложности, энтропии, информации. “Математика. Компьютер. Образование”. Вып. 7, ч. 2, “Прогресс-Традиция”, М., 2000, с. 540 — 546

2. Гольдштейн А.Л. Теория принятия решений. Задачи и методы исследования операций и принятия решений: Учеб. пособие для вузов. - Пермь: Изд-во ПГТУ, 2004.-360 с.

3. Абдулгамидов А.Р., “О системах Хаара, Радемахера и Уолша функций многих переменных”, Функциональный анализ и теория функций. 6, Учён. зап. Казан. гос. ун-та, 129, № 3, Изд-во Казанского ун-та, Казань, 1969, 53–59

4. Малозёмов В.Н., Машарский С.М. Основы дискретного гармонического анализа. Часть вторая. СПб.: НИИММ, 2003. 100 с.

5. Львович А.А., Кузьмин Б.Д. Аналитическое выражение для спектров функций Уолша // Радиотехника. 1980. Т. 35. № 1. С. 33–39.

6. Зеленков А.В. Быстрое преобразование спектра сигнала из базиса Уолша в базис дискретных экспоненциальных функций // Радиотехника и электроника. 1977. Т. 27. № 3. С. 552–565.

7. Пойда В.Н. Спектральный анализ в дискретных ортогональных базисах. Минск: Наука и техника, 1978. 136 с.