0 1 t
Рис . 3. Аппроксимация функции x(t)=at рядом Уолша – Пэли
4. Дискретное преобразование Уолша
Дискретное преобразование Уолша (ДПУ) производится при использовании дискретных функций Уолша Wa(i/N) Þ Wal(n, Q) и выполняется над решетчатыми сигналами x(i) , при этом число отсчетов N должно быть двоично -рациональным, т. е. N = 2n , где n = 1, 2,... , i - определяет номер точки дискретного интервала определения a = 0, 1,..., N-1.
Формулы дискретного ряда Уолша имеют вид:
,(9)где дискретный спектр Уолша
. (10)Для проверки правильности расчета спектральных коэффициентов может быть использовано равенство Парсеваля:
(11)График дискретной функции Уолша, упорядоченных по Пели приведен на рис.
W7
Рис. 4 График дискретной функции Уолша
Для ускорения дискретных преобразований Уолша используются алгоритмы быстрого преобразования Уолша (БПУ) аналогичного БПФ.
БПУ также производится прореживанием по времени и частоте.
Применение преобразований Уолша. Преобразования Уолша находят широкое применение при:
- построении цифровых фильтров;
- исследовании систем автоматического управления (моделировании, оптимизации, идентификации и т. д.);
- формировании сигналов;
- анализе и синтезе логических устройств (в теории цифровых автоматов).
Пример 2. Найти спектр Уолша - Пэли для дискретного сигнала
x(i) = i, N = 8, i = 0, 1, ...,7.
Используя формулу для Caпри N=8, в соответствии с графиком дискретной функции Уолша , приведенной на рис. 4, можно найти спектр Уолша (таб. 3).
Таблица 3
Значения функций и спектральныхкоеф. при значениях индексов i и a | |||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
x(i)=i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Ca | 3,5 | -2 | -1 | 0 | -0,5 | 0 | 0 | 0 |
Список литературы
1. Коганов А.В. Векторные меры сложности, энтропии, информации. “Математика. Компьютер. Образование”. Вып. 7, ч. 2, “Прогресс-Традиция”, М., 2000, с. 540 — 546
2. Гольдштейн А.Л. Теория принятия решений. Задачи и методы исследования операций и принятия решений: Учеб. пособие для вузов. - Пермь: Изд-во ПГТУ, 2004.-360 с.
3. Абдулгамидов А.Р., “О системах Хаара, Радемахера и Уолша функций многих переменных”, Функциональный анализ и теория функций. 6, Учён. зап. Казан. гос. ун-та, 129, № 3, Изд-во Казанского ун-та, Казань, 1969, 53–59
4. Малозёмов В.Н., Машарский С.М. Основы дискретного гармонического анализа. Часть вторая. СПб.: НИИММ, 2003. 100 с.
5. Львович А.А., Кузьмин Б.Д. Аналитическое выражение для спектров функций Уолша // Радиотехника. 1980. Т. 35. № 1. С. 33–39.
6. Зеленков А.В. Быстрое преобразование спектра сигнала из базиса Уолша в базис дискретных экспоненциальных функций // Радиотехника и электроника. 1977. Т. 27. № 3. С. 552–565.
7. Пойда В.Н. Спектральный анализ в дискретных ортогональных базисах. Минск: Наука и техника, 1978. 136 с.