Смекни!
smekni.com

Исследование емкостно-диодной измерительной схемы (стр. 4 из 7)

- применение экранов, фильтров и специальных цепей (например, эквипотенциальных цепей) для устранения погрешностей от влияния электромагнитных полей, наводок и токов утечек;

- применение стабилизированных источников питания;

- амортизация приборов;

- удаление средств измерений и объектов исследования от источников влияющих воздействий;

- исключение из измерительной цепи материалов, создающих большую термо-ЭДС в паре с медью, например никеля, который в паре с медью создает термо-ЭДС 19 мкВ/К.

При аттестации высокоточных мер магнитной индукции производят компенсацию магнитного поля Земли трехкомпонентной системой катушек с током. Погрешность от термо-ЭДС можно исключить путем включения в цепь термопары, которая компенсирует паразитную термо-ЭДС.

Для уменьшения прогрессирующей погрешности от старения элементов (резисторы, растяжки, постоянные магниты и др.) их параметры стабилизируют путем искусственного и естественного старения.

Систематические погрешности можно также уменьшить рациональным расположением средств измерений по отношению друг к другу, к источнику влияющих воздействий и к объекту исследования. Например, магнитоэлектрические приборы должны быть удалены друг от друга, оси катушек индуктивностей должны располагаться под углом 90o, выводы термопары располагаются по изотермическим линиям объекта.

Многие систематические погрешности, являющиеся не изменяющимися во времени функциями влияющих величин или обусловленные стабильными физическими эффектами, могут быть теоретически рассчитаны и устранены введением поправок или использованием специальных корректирующих цепей. Расчетным путем можно также определить ряд погрешностей взаимодействия, например погрешность от собственного потребления мощности средством измерения.

Радикальным способом устранения систематических погрешностей является поверка средств измерений в рабочих условиях с целью определения поправок к результатам измерений. Это дает возможность учесть все систематические погрешности без выявления причин их возникновения.

Степень коррекции систематических погрешностей в этом случае зависит от метрологических характеристик используемых образцовых приборов и случайных погрешностей поверяемых приборов.

Метод инвертирования

Используется для устранения ряда постоянных и медленно изменяющихся систематических погрешностей. Этот метод известен также под названиями:

- метода исключения погрешности по знаку;

- метода коммутационного инвертирования;

- метода структурной модуляции;

- метода двукратных измерений;

-метода инвертирования функций преобразования и др.

Все эти методы основаны на выделении алгебраической суммы четного числа сигналов измерительной информации, которые вследствие инвертирования отличаются направлением информативного сигнала, опорного сигнала или знаком погрешности.

Близок к методу инвертирования метод модуляции-демодуляции, при котором, по существу, производятся периодическое инвертирование входного сигнала и подавление помехи, имеющей однонаправленное действие.

Распространенным вариантом метода инвертирования является метод исключения погрешности по знаку. Он часто применяется для исключения известных по природе погрешностей, источники которых имеют направленное действие. При использовании этого метода два измерения выполняются так, чтобы постоянная систематическая погрешность входила в результаты измерений с разными знаками. Этого можно достигнуть изменением знака погрешности при неизменном значении измеряемой величины или инвертированием входного сигнала при сохранении знака и значения систематической погрешности.

Первый способ используется в том случае, если можно изменить знак или направление систематической погрешности. Например, для исключения влияния внешнего магнитного поля на показания прибора или на параметры меры изменяют знак погрешности путем поворота прибора на 1800. Этот же способ используется в астазированных средствах измерений, содержащих два идентичных преобразователя, оси направленности которых расположены под углом 180o. Полностью устранить рассматриваемую погрешность можно только в том случае, если внешнее поле однородно и вектор магнитной индукции направлен коллинеарно с осью направленности прибора. Не исключенные систематические погрешности от неточного выполнения этих условий в ряде случаев можно теоретически оценить.

Способ инвертирования входного сигнала широко используется для коррекции аддитивных погрешностей, не зависящих от направления измеряемой величины (например, погрешности нуля в приборах с нулем посредине шкалы, погрешностей от термо-ЭДС, внешнего магнитного поля и других), а также некоторых мультипликативных погрешностей средств измерений (например, погрешности линейности, обусловленной значениями четных производных функции преобразования).

Методы инвертирования широко используются для уменьшения погрешностей современных средств измерений. Этому способствует развитие измерительных преобразователей с дифференциальными входами, а также быстродействующих коммутаторов и сумматоров в микроэлектронном исполнении.

Метод замещения (метод разновременного сравнения)

Является наиболее универсальным, дает возможность устранить большинство систематических погрешностей. Измерения осуществляются в два приема.

Сначала по отсчетному устройству прибора делают отсчет измеряемой величины, а затем, сохраняя все условия эксперимента неизменными, вместо измеряемой величины на вход прибора подают известную величину, значение которой с помощью регулируемой меры (калибратора) устанавливают таким образом, чтобы показание прибора было таким же, как при включении измеряемой величины. За результат измерения принимается значение известной величины, определяемое по входному коду меры.

Метод замещения широко используется для повышения точности измерений ряда величин, например, для определения массы с помощью не очень точных весов и набора гирь, для точных измерений сопротивлений, индуктивностей, емкостей и других величин, для которых существуют точные регулируемые меры. Метод обеспечивает в ряде случаев существенное повышение точности, поскольку точность мер обычно выше точности других средств измерений. Разновидностью метода замещения является метод разновременного компарирования, который используется при измерениях таких величин, которые нельзя с высокой точностью воспроизводить при помощи регулируемых мер или других технических средств.

Обычно это величины, изменяющиеся с высокой частотой или по сложному закону. В качестве известных регулируемых величин при этом используются величины такого же рода, как измеряемые, но отличающиеся от них спектральным составом (обычно постоянные во времени и в пространстве) и создающие такой же, как и измеряемая величина, сигнал на выходе компарирующего преобразователя.

Другой разновидностью метода замещения является метод образцовых сигналов, заключающийся в том, что на вход средства измерения периодически вместо измеряемой величины подаются образцовые сигналы такого же рода, что и измеряемая величина.

Разность между реальной и номинальной градуировочными характеристиками используется для коррекции чувствительности или для автоматического введения поправки в результат измерения. При этом, как и в методе замещения, устраняются все систематические погрешности, но только в тех точках диапазона измерения, которые соответствуют образцовым сигналам.

Метод широко используется в современных точных цифровых приборах и в информационно-измерительных системах. Характерным примером метода образцовых сигналов является периодическая подстройка рабочего тока в компенсаторах и цифровых вольтметрах постоянного тока при помощи нормального элемента.

К методу образцовых сигналов примыкает тестовый метод. Здесь значение измеряемой величины определяется по результатам нескольких наблюдений, при которых в одном случае входным сигналом средства измерения является сама измеряемая величина Х, а в другом - так называемые тесты, являющиеся функциями измеряемой величины, например

X1 = X + ΔX;

X2 = a · X;

X3 = (X + ΔX)/b.

Здесь ΔX - известное приращение величины, создаваемое мерой; a, b - постоянные коэффициенты.

Тестовые методы можно использовать для коррекции систематических погрешностей при измерениях различных физических величин. Эффективность этих методов зависит от погрешности воспроизведения величины ΔX и наличия случайных погрешностей.

Метод вспомогательных измерений

Используется для исключения погрешностей от влияющих величин и неинформативных параметров входного сигнала. Для реализации этого метода одновременно с измеряемой величиной Х при помощи вспомогательных измерительных устройств производится измерение каждой из влияющих величин и вычисление при помощи вычислительного устройства, а также формул и алгоритмов влияния поправок ΔXi к результатам измерений. Широкому использованию метода вспомогательных измерений способствует быстрое развитие средств измерений со встроенными микропроцессорами. Объектами вспомогательных измерений являются не только влияющие величины, но и неинформативные параметры входного сигнала.

Этот метод является составной частью многих структурных методов коррекции погрешностей.

Метод симметричных наблюдений

Заключается в проведении многократных наблюдений через равные промежутки времени и усреднении результатов наблюдений, симметрично расположенных относительно среднего наблюдения. Обычно этот метод применяется для исключения прогрессирующих погрешностей, изменяющихся по линейному закону.