гдеdэ – максимальный диаметр вывода устанавливаемого ЭРЭ;
∆dн.о. – нижнее предельное отклонение от номинального диаметра монтажного отверстия /18/;
r – разница между минимальным диаметром отверстия и максимальным диаметром вывода ЭРЭ, её выбирают в пределах
r = 0,1…0,4 мм.
d = 0,9 + 0,1 + 0,2 = 1,2 мм
Примечание - Рассчитанные значения d сводят к предпочтительному ряду отверстий:
0,7; 0,9; 1,1; 1,3; 1,5; 1,7; мм.
d = 1,3 мм – по предпочтительному ряду отверстий.
3.1.4 Расчёт диаметра контактных площадок
3.1.4.1 Минимальный диаметр контактных площадок для ДПП, изготовляемых электрохимическим методом при фотохимическом способе рисунка
Dmin = D1min + 0,03, (3.5)
где D1min– минимальный эффективный диаметр площадки:
D1min = 2*(bм + dmax / 2 + dd + dp),
где bм – расстояние от края просверленного отверстия до края контактной площадки;
dd и dp – допуски на расстояние отверстий и контактных площадок /18/;
dmax–максимальный диаметр просверленного отверстия, мм;
dmax = d + ∆d + (0,1…0,15),
где∆d –допуск на отверстия /18/.
dmax = 1,3 + 0,1 + 0,1 = 1,5 мм;
D1min=2*(0,035 + 1,5 / 2 + 0,1 + 0,25)=2,27 мм;
Dmin=2,27 + 0,03 = 2,273 мм ≈ 2,57 мм.
3.1.4.2 Максимальный диаметр контактной площадки
Dmax=Dmin + (0,02…0,06); (3.6)
Dmax=2,57 + 0,02 = 2,59 мм.
3.1.5 Расчёт минимального расстояния между элементами проводящего рисунка
3.1.5.1 Минимальное расстояние между проводником и контактной площадкой
S1min = L0 – [(Dmax / 2 + dp) + (bmax / 2 + dl)], мм, (3.7)
где L0– расстояние между центрами рассматриваемых элементов;
l –допуск на расположение проводников /18/.
S1min= 2 – [(2,59 / 2 + 0,25) + (0,035 / 2 + 0,05)] = 0,83 мм.
4.1.5.2 Минимальное расстояние между двумя контактными площадками
S2min=L0– (Dmax + 2*dp) = 2 – (2,59 + 2*0,25) = 1,04 мм. (3.8)
4.1.5.3 Минимальное расстояние между двумя проводниками
S3min=L0– [(Dmax + 2*dl)] = 2 – [(2,59 + 2*0,05)] = 0,64 мм. (3.9)
Вывод: Рассчитал геометрические параметры элементов печатного монтажа. Рассмотрел минимальные расстояния между элементами печатного рисунка, соответствующие условиям, предъявляемым к геометрическим параметрам.
Цель: рассчитать необходимое искусственное освещение для заданного помещения.
Исходные данные:
1 длина аудитории A = 10 м;
2 ширина аудитории B = 4 м;
3 высота аудитории H = 3 м;
4 для освещения аудитории предусмотрены потолочные светильники типа УСА-25 с двумя люминесцентными лампами типа ЛБ-40;
5 уровень рабочей поверхности над полом для аудитории составляет 0,8м.
3.2.1 Расчет подвеса светильников
h = H * 0,8, м, (3.10)
где H - высота аудитории, м.
h = 3 * 0,8 = 2,4 м.
3.2.2 Расчет расстояния между рядами светильников
L = x * h, м, (3.11)
где x = 1,3…1,4 у светильников типа УСА-25 /13/;
L = 1,3 * 2,4 = 3,12 м.
Располагаем светильники по длине помещения. Расстояние между стенами и крайними рядами светильников принимаем l » (0,3…0,5)*L.
l » (0,3…0,5) * L = 0,4 * 3,12 = 1,25 м.
3.2.3 Расчет числа рядов светильников
n = B/L, ряд., (3.12)
где B - ширина аудитории, м;
n = 4/3,12 = 2 ряда.
3.2.4 Расчет индекса помещения
i = (A*B) / (h*(A + B)), (3.13)
гдеА - длина аудитории, м.
Выбираем из светотехнических справочников h.
h = 0,50
i = (10*4) / (2,4*(10 + 4)) = 1,19.
3.2.5 Расчет светового потока, излучаемого светильником
Фсв = 2*Фл, (3.14)
где Фл = 3120 - световой поток лампы ЛБ-40;
Фсв = 2*3120 = 6240.
3.2.6 Расчет числа светильников в ряду
(3.15)
где Eн = 400 лк. - норма освещенности;
Rз = 1,5 - коэффициент запаса, учитывающий запыление светильников иизнос источников света в процессе эксплуатации;
S - площадь помещения, м;
S = A*B, м2;
S = 10 * 4 = 40 м2;
z = 1,15 - коэффициент неравномерности освещения;
g - коэффициент затемненности.
N = (400*1,5*40*1,15) / (2*6240*0,50) = 5 шт.
3.2.7 Расчет общей длины ряда светильников
Q = N * lсв, м, (3.16)
где lсв = 1,27 м - длина одного светильника типа УСА-25 с лампами ЛБ-40.
Q = 5*1,27 = 6,35 м.
Вывод: после сделанного расчета приходим к выводу, что для освещения заданного помещения необходимо использовать потолочные светильники типа УСА-25 с двумя люминесцентными лампами типа ЛБ-40, располагать светильники в 2 ряда по 5 штук с общей длиной 6,35 м.
Цель: определить основные параметры понижающего трансформатора для источника питания программатора.
Исходные данные:
1 Напряжение первичной обмотки U1 =220 В.
2 Напряжения вторичных обмоток U2 =30 В, U3 =5 В, U4=3 В.
3 Токи вторичных обмоток I2=0,5 А, I3=0,7 А, I4=0,7 А.
4 Частота тока в сети f=50 Гц.
5 Трансформатор однофазный стержневого типа.
3.3.1 Определяем вторичную мощность трансформатора
(3.17)где U2 , U3 , U4 – напряжения вторичных обмоток;
I2 , I3 , I4 – токи вторичных обмоток;
3.3.2 Определяем первичную мощность трансформатора
(3.18)где
- кпд трансформатора, который принимаем по таблице 2./13/3.3.3 Определяем поперечное сечение сердечника трансформатора
(3.19)где k–постоянная для воздушных трансформаторов (k=6¸8)
3.3.4 Принимаем размеры сердечника следующими:
ширина пластин а=20 мм;
высота стержня
(3.20)ширина окна
(3.21)где m– коэффициент, учитывающий навыгоднейшие размеры окна сердечника (m=2,5¸3).
толщина пакета пластин b=30 мм.
3.3.5 Определяем фактическое сечение выбранного сердечника
(3.22)3.3.6 Определяем ток первичной обмотки
(3.23)3.3.7 Определяем сечение провода первичной и вторичной обмоток, исходя из плотности тока
, равной 2,5 А/мм2. (3.24)3.3.8 Принимаем для первичной и вторичной обмоток провод ПЭВ-1 со следующими данными /13/:
а) диаметры проводов без изоляцииd1=0,53 мм; d2=0,5 мм; d3=0,6 мм; d4=0,6 мм;
б) диаметры проводов с изоляциейdи1=0,58 мм; dи2=0,55 мм; dи3=0,65 мм; dи4=0,65 мм.
Определяем число витков первичной и вторичной обмоток, приняв магнитную индукцию сердечника Bc=1,35 Тл /13/:
, (3.25)С учетом компенсации падения напряжения в проводах число витков вторичных обмоток принимаем
, , .Проверяем, разместятся ли обмотки в окне сердечника.
Площадь, занимаемая первичной и вторичной обмотками:
(3.26)Площадь окна сердечника
(3.27)Отношение расчетной и фактической площадей окна сердечника
Следовательно, обмотки свободно разместятся в окне выбранного сердечника трансформатора.
Вывод: В результате расчета были определены основные параметры трансформатора для источника питания программатора.
Цель: вычислить потребляемую мощность схемы программатора.
Данные по элементам и рассчитанная мощность сведены в таблицу 2.
Таблица 2 - Потребляемая мощность.
Наименование элемента | Напряжение питания Uпит, В | Потребляемый ток Iпот, Ма | Потребляемая мощность Pпот, Вт |
Микроcхемы | |||
К555АП5 | 5 | 54 | 0,27 |
К555АП6 | 5 | 95 | 0,475 |
К555ИР23 | 5 | 45 | 0,225 |
К555КП11 | 5 | 14 | 0,07 |
К555ЛА13 | 5 | 12 | 0,06 |
К555ЛН3 | 5 | 6,6 | 0,033 |
К572ПА1 | 14 | 2 | 0,028 |
К574УД2 | 30 | 10 | 0,3 |
КР580ВВ55А | 5 | 120 | 0,6 |
Резисторы | |||
С2-33А | - | - | 0,125 |
С2-33А | - | - | 0,25 |
С2-33 | - | - | 0,5 |
С2-33А | - | - | 1 |
Транзисторы | |||
КТ315А | 0,4 | 100 | 0,04 |
КТ361Г | 0,4 | 50 | 0,02 |
КТ805 | 2,5 | 5000 | 12,5 |
КТ814 | 0,6 | 1500 | 0,9 |
КТ972 | 1,5 | 4000 | 6 |
КТ973 | 1,5 | 4000 | 6 |
Формула расчета потребляемой мощности:
. (3.28)