Смекни!
smekni.com

Разработка схемы электронного эквалайзера (стр. 3 из 6)

Полосовой фильтр 3. (ПФ3)

Частоты среза фильтра:

кГц,
кГц ;

рад/с;

рад/с;

Частота дискретизации fД=18 кГц;

Период дискретизации фильтра для определения порядка данного фильтра:

мс.

Переходная функция

:

.

Рис.6. Переходная функция ПФ3.

Определим коэффициенты фильтра ПФ3:

Таблица 5.

n a n a n a
0 0,040797115 16 -0,020022291 32 0,033266
1 0,001220133 17 0,055837751 33 0,260118
2 0,039978222 18 0,098343639 34 -0,09252
3 0,02276506 19 -0,121159876 35 -0,25744
4 -0,105348775 20 -0,099106166 36 0,086745
5 -0,016132812 21 0,105674587 37 0,060059
6 0,099578035 22 0,034090375 38 0,051138
7 0,000120154 23 0,00765609 39 0,204207
8 -0,018054176 24 0,033408102 40 -0,26949
9 -0,004859298 25 -0,15056655 41 -0,34219
10 -0,082884453 26 -0,049309806 42 0,383098
11 0,033032806 27 0,20912763 43 0,239879
12 0,12739375 28 0,019199721 44 -0,17655
13 -0,050946367 29 -0,114030202 45 0,0433
14 -0,081052541 30 0,000617104 46 -0,43205
15 0,02041495 31 -0,089953059 47 -0,30865
48 1,286545
49 0,361651
50 -2,03978
51 -0,1583
52 2,34

Таким образом, получим: 2*N+1=53

Полосовой фильтр №4 (ПФ4)

Частоты среза фильтра:

кГц,
кГц ;

рад/с;

рад/с;

Частота дискретизации fД=18 кГц;

Период дискретизации фильтра для определения порядка данного фильтра:

мс.

Переходная функция

:

Рис.7. Переходная функция ПФ4.

Определим коэффициенты фильтра ПФ4:

Таблица 6.

n a n a
0 -0,039924801 13 -0,14859
1 -0,036859051 14 -0,03612
2 -0,030099957 15 0,339846
3 0,181767777 16 -0,44409
4 -0,262616392 17 0,188865
5 0,179398893 18 0,21898
6 -0,00735706 19 -0,34919
7 -0,074570718 20 -0,03768
8 -0,033569017 21 0,674093
9 0,236141895 22 -0,90173
10 -0,323321834 23 0,190798
11 0,185039538 24 1,350195
12 0,056604813 25 -2,93165
26 1,8

Таким образом, получим: 2*N+1=27

Результаты определения порядка фильтров удобно представить в следующем виде:

Таблица 7.

Фильтр Полоса пропускания NTд, с N Максимальная точка АЧХ
ФНЧ1 0-0,54 0,0042 93 4,2
ПФ1 0,54-1 0,0043 95 4,3
ПФ2 1-2,9 0,0162 36 1,6
ПФ3 2,9-7 0,0009 20 0,88
ПФ4 7-11 0,0006 13 0,56

После ограничения функции и внесения запаздывания можно произвести вычисление коэффициентов фильтра:

a0=k(0)=a2N;

a1=k(Tд)=a2N-1;

a2=k(2*Tд)=a2N-2;

aN=k(N*Tд).

Получив массив коэффициентов, можно записать АФЧХ фильтра с конечным импульсным откликом.

H(Z)=a0+a1*Z^-1+…+a2N+1*Z^-(2N+1), Z=e^jwt

H(jw)=a0+a1*e^-jwt+…+a2N+1*e^-(2N+1)*jwt=a0+a1*Cos(w*Tд)+…+a2N+1*Cos(2N+1)*w*Tд-j*(a1*SinwTд+…+a2N+1*Sin(2N+1)wTд)

Запишем это выражение в более удобной для программирования форме:

H(jw)=Re(w)+jJm(w),

ТогдаАЧХфильтра

/H(jw)/= Re^2(w)+Jm^2(w)

Рис.8. Общая схема DSP-системы

Сигнал, поступающий на аналоговый вход системы предварительно ограничивается по частоте с помощью противопомехового фильтра нижних частот. Затем он передается на АЦП. В выделенный момент дискретизации конвертер прерывает работу процессора и формирует соответствующую выборку.

В DSPвходные данные обрабатываются по программному алгоритму. Когда процессор заканчивает необходимые вычисления, он посылает результат в ЦАП. ЦАП конвертирует выход DSP в желаемую аналоговую форму. Выход конвертора сглаживается восстанавливающим фильтром нижних частот.

Произвольный главный машинный интерфейс служит для связи DSPс внешними системами, передающими и принимающими данные и сигналы управления.

Организация интерфейса между устройствами аналогового

ввода-вывода, кодеками и DSP-процессорами.

Так как большинство приложений цифровой обработки сигналов требует наличия одновременно АЦП и ЦАП, то широкое развитие получили универсальные устройства, интегрирующие функции кодека и портов ввода-вывода на одном кристалле и обеспечивающие простое подключение к стандартным DSP-процессорам. Эти устройства называют аналоговыми оконечными устройствами (далее по тексту-AFE-AnalogFrontEnd ) .

Функциональная схема микросхемы AD73322 показана на рис.3. Данный прибор представляет собой двойной AFEс двумя 16-разрядными АЦП и двумя 16-разрядными ЦАП с возможностью работы с частотой дискретизации 64 кГц. ИС AD73322 разработана для универсального применения, включая обработку речи и телефонию с использованием сигнал/шум на уровне 77дБ в пределах голосовой полосы частот.

Каналы АЦП и ЦАП имеют программируемые коэффициенты усиления по входу и выходу с диапазонами до 38дБ и 21 дБ соответственно. Встроенный источник опорного напряжения величиной +2ю7-5.5 В. Его потребляемая мощность при напряжении питания +3 В составляет 73 мВт.

Рис. 9. Функциональная схема микросхемы ADSP-2189.

Системный интерфейс DSP

Системный интерфейс представляет собой, набор программный и аппаратных возможностей управления DSP, сигналы управления включают в себя:

- Reset – сигнал сброса,

- Синхроимпульсы,

- Входы флагов,

- Сигналы запроса прерывания

Reset – останавливает выполнение инструкций и осуществляет аппаратный сброс. После сброса значение всех регистров, ВУ и генератора адреса не определенно.

Синхроимпульсы

Процессор использует ТТЛ совместимые импульсы подаваемые на вход CLKIN, или кварцевый резонатор включается между входами CLKIN и XTAL.

Программная загрузка процессора может инициализироваться не только сигналом RESET, но и программным путем. Процессор содержит управляющий регистр и при установке в нем бита BFORCE и 1 инициализируется программная загрузка. Во время программной загрузки все прерывания маскируются.

DSP имеет 1 или несколько входов для внешних прерываний IRQ1 и IRQ0, сюда подключаются сигналы запроса прерываний, каждый из который имеет свой уровень приоритета.

FI – входной флаг, может использоваться в условных командах перехода.

FO – может использоваться для разных целей как выходной управляющий сигнал. Сигнал FO не затрагивается аппаратным сбросом. Все остальные флаги устанавливаются в 1, при аппаратном сбросе.