Методы глубокого диагностирования по однократным измерениям вибрации (шума) пока не позволяют решить задачи диагностирования и долгосрочного прогнозирования всех видов узлов, а, следовательно, и машин в целом. Исключение составляют самые аварийноопасные узлы, прежде всего подшипники качения, для которых, как уже отмечалось, разработаны и эффективно используются системы оценки их состояния, построенные на методах глубокого диагностирования и прогнозирования по одноразовым измерениям вибрации. Объектами применения этих методов могут также стать системы мониторинга, в которых на их основе может строится система идентификации обнаруженных изменений. Эти системы идентификации позволят определить многие из обратимых изменений и снизить, тем самым, частоту ложных срабатываний систем мониторинга.
ОБЪЕКТЫ ДИАГНОСТИРОВАНИЯ
Основные методы виброакустической диагностики рассчитаны на обнаружение зарождающихся дефектов в элементах и узлах машин и оборудования. Обнаруживаемые дефекты по характеру влияния на вибрацию и шум объекта диагностирования могут быть разделены на три основные группы.
К первой относятся дефекты, появление которых изменяет характеристики колебательных сил, являющихся причиной возникновения вибрации и шума.
Во вторую группу объединяются дефекты, которые не меняют характеристикиколебательных сил, а изменяют механические свойства узлов, в которых они действуют.
К третьей группе относятся дефекты, приводящие к изменению механических свойств узлов и конструкции, по которым распространяется вибрация.
Методы функциональной диагностики позволяют эффективно обнаруживать дефекты первой группы. Методы тестовой диагностики эффективнее всего работают при поиске дефектов третьей группы. Дефекты второй группы могут обнаруживаться методами как функциональной, так и тестовой диагностики. Если же дефекты имеют свойства первой и второй групп, то для их обнаружения, как правило, следует использовать методы функциональной диагностики. И, наконец, дефекты всех трех групп на последних этапах своего развития оказывают существенное влияние на сигналы вибрации и (или) шума и поэтому могут быть обнаружены до момента возникновения аварийной ситуации системами мониторинга виброакустического состояния машин и оборудования.
Ниже представлена краткая информация об особенностях диагностирования наиболее ответственных узлов различных видов машин с помощью методов функциональной диагностики.
Так, на начальном этапе развития виброакустической диагностики ее наибольшие успехи были связаны с диагностикой цилиндро-поршневой группы двигателей внутреннего сгорания. Во время работы через определенные интервалы времени в двигателе формируются ударные импульсы, обусловленные особенностями сгорания топлива, работой поршней и распределительных клапанов. Сравнение возбуждаемой ударами вибрации разных цилиндров по времени начала, форме и амплитуде дает возможность выявить дефекты цилиндро-поршневой группы, системы распределения и системы зажигания. Это можно сделать с помощью простейшей аппаратуры, а именно, датчика вибрации и осциллографа. Пример осциллограммы вибрации двигателя автомобиля, снятой с датчика, установленного между вторым и третьим цилиндром, приведен на рис.2. Сравнение параметров ударных импульсов по форме между собой дает возможность достаточно просто диагностировать узлы, являющиеся их источником. Но одновременно эти импульсы крайне затрудняют анализ вибрации, возбуждаемой другими узлами, например, подшипниками коленчатого вала. Поэтому при диагностировании двигателей внутреннего сгорания обычно не ограничиваются использованием только виброакустических технологий.
Следующим успешным этапом развития виброакустической диагностики можно считать разработку методов и средств диагностики подшипников качения по ударным импульсам. Следует отметить, что эти импульсы в подшипнике возникают только при появлении дефектов поверхностей качения и смазки.
В дальнейшем диагностика стала развиваться по пути анализа вибрации, возбуждаемой силами трения. Силы трения, и соответственно, возбуждаемая ими высокочастотная вибрация, в исправных подшипниках представляют собой случайные процессы с постоянной за время измерения мощностью. При возникновении дефектов поверхностей качения появляется периодическое изменение мощности этих процессов, т.е. появляется амплитудная модуляция сил трения и высокочастотной вибрации.
Частота модуляции определяет вид дефекта, глубина модуляции - степень развития дефекта. По составляющим спектра огибающей вибрации, определяющим изменение мощности сигнала во времени, в настоящее время идентифицируется вид и величина более десяти различных видов дефектов. На рис.9а и рис.9б приведены спектры огибающей высокочастотной вибрации подшипникового узла без дефектов и с износом наружного кольца, которые иллюстрируют возможности диагностирования подшипников.
Дефекты обнаруживаются на ранней стадии развития, за несколько месяцев до появления аварийноопасного состояния. Современные системы автоматического диагностирования производства предприятия “Виброакустические системы и технологии” позволяют по измерениям, проводимым достаточно редко, определить дефектный подшипник, вид дефекта, степень его развития и выдают рекомендации по необходимому обслуживанию или замене подшипника, а также дату следующего измерения, если подшипник не подлежит замене. Это позволяет перейти от обслуживания по регламенту и плановых ремонтов к обслуживанию и ремонту по фактическому состоянию. При этом количество измерений составляет порядка десяти-пятнадцати за весь жизненный цикл подшипника, причем каждый интервал времени до следующего измерения задается системой в зависимости от результата диагноза, т.е. от реального состояния подшипника.
Рис. 9а. Спектры огибающей высокочастотной вибрации подшипникового узла без дефектов.
Рис. 9б. Спектры огибающей высокочастотной вибрации подшипникового узла с износом наружного кольца. BPFO - частота перекатывания тел качения по наружному кольцу.
В настоящее время остро стоят вопросы диагностики зубчатых передач. Многие годы их пытались диагностировать по появлению ударов при входе дефектных зубьев в зацепление. Однако, удары далеко не всегда возникают при дефектах зубьев, в частности, при трещине или сломанном зубе. Кроме того, при распространении вибрации, возбуждаемой ударами в зацеплениях, через шестерни, вал и подшипниковые узлы, ее потери могут быть случайными и значительными. Это и является причиной очень больших погрешностей при определении глубины дефекта по измеряемой вибрации. Но по мере развития систем диагностики подшипников оказалось, что при появлении динамической нагрузки на них, также как и при появлении дефектов поверхностей трения, возникает модуляция сил трения и высокочастотной вибрации. В то же время дефекты зубьев и зубчатых зацеплений приводят именно к появлению динамической (ударной) нагрузки на подшипники шестерен, величина которой определяется глубиной дефекта. Именно эти исследования последних лет позволили перейти на диагностику шестерен не по вибрации, возбуждаемой ударами зубьев друг о друга, а по ударным нагрузкам на подшипники, обнаруженным по спектру огибающей вибрации подшипниковых узлов. По совокупности составляющих спектра огибающей высокочастотной вибрации подшипника можно идентифицировать бой шестерни, износ (трещины, сколы) зубьев и дефекты зацепления для каждой из шестерен зубчатой передачи.
В качестве примера на рис.10а и рис.10б приведены спектры огибающей вибрации подшипников дефектного редуктора. В спектрах каждой пары подшипников на обоих осях видны диагностические признаки появившихся ударных нагрузок, что однозначно свидетельствует о возникновении дефекта зубьев шестерни первой ступени.
Рис. 10а. Спектры огибающей вибрации подшипников первой ступени редуктора с дефектами зубьев шестерни.
fвр1 - частота вращения, первой ступени редуктора
Рис. 10б. Спектры огибающей вибрации подшипников второй ступени редуктора с раковиной на внутреннем кольце подшипника.
fвр1 и fвр2 - частоты вращения, соответственно, первой и второй ступени,
fв - частота перекатывания тел качения по внутреннему кольцу.
Не менее важной является задача диагностирования рабочих колес различного вида машин. Наибольшие успехи в ее решении получены с помощью анализа характеристик пульсаций жидкости или газа, обтекающих лопасти рабочего колеса. Проблемы диагностирования прежде всего связаны со сложностью измерения пульсаций давления перекачиваемой среды в непосредственной близости к рабочему колесу. В насосах и гидротурбинах еще можно найти достаточно простое решение, заключающееся в измерении вибрации корпуса, возбуждаемой пульсациями давления несжимаемой жидкости.