• предусматривает синхронную передачу и мультиплексирование. Элементы первичной сети SDH используют для синхронизации один задающий генератор, как следствие, вопросы построения систем синхронизации становятся особенно важными;
• предусматривает прямое мультиплексирование и демультиплексирование потоков PDH, так что на любом уровне иерархии SDH можно выделять загруженный поток PDH без процедуры пошагового демультиплексирования. Процедура прямого мультиплексирования называется также процедурой ввода-вывода;
• позволяет объединить системы PDH европейской и американской иерархии, обеспечивает полную совместимость с существующими системами PDH и, в то же время, дает возможность будущего развития систем передачи, поскольку обеспечивает каналы высокой пропускной способности для передачи ATM, MAN, HDTV и т.д.;
• обеспечивает лучшее управление и самодиагностику первичной сети. Большое количество сигналов о неисправностях, передаваемых по сети SDH, дает возможность построения систем управления на основе платформы TMN. Технология SDH обеспечивает возможность управления сколь угодно разветвленной первичной сетью из одного центра.
В системе SDH производится синхронное мультиплексирование/ демультиплексирование, которое позволяет организовывать непосредственный доступ к каналам PDH, которые передаются в сети SDH. Это довольно важное и простое нововведение в технологии привело к тому, что в целом технология мультиплексирования в сети SDH намного сложнее, чем технология в сети PDH, усилились требования по синхронизации и параметрам качества среды передачи и системы передачи, а также увеличилось количество параметров, существенных для работы сети. Как следствие, методы эксплуатации и технология измерений SDH намного сложнее аналогичных для PDH.
Технология ATM отличается от технологий PDH и SDH тем, что охватывает не только уровень первичной сети, но и технологию вторичных сетей, в частности, сетей передачи данных и широкополосной ISDN (B-ISDN). В результате при рассмотрении технологии ATM трудно отделить ее часть, относящуюся к технологии первичной сети, от части, тесно связанной со вторичными сетями. В отличие от синхронной передачи на выходе мультиплексора ячейки от разных источников не занимают строго фиксированные позиции на временной оси. А появляются по мере их поступления от источников сообщений. Обработка ячеек в коммутаторах АТМ осуществляется аппаратным способом, что обеспечивает в сочетании с используемым АТМ асинхронным методом мультиплексирования как малые задержки сигналов, так и малый их разброс. В свою очередь, это позволяет передавать в сетях с АТМ такие чувствительные к задержке сообщения как голосовые и видео.
Импульсно-кодовая модуляция
По своей природе многие сигналы (телефонные, факсимильные, телевизионные) не являются цифровыми. Это аналоговые, или непрерывные, сигналы. Замена непрерывного сигнала последовательностью цифр, называется дискретизацией непрерывного сигнала. Отсчеты непрерывного сигнала следует брать с такой частотой (или через такой интервал времени), чтобы успевать отследить все, даже самые быстрые, изменения сигнала. Иначе при восстановлении этого сигнала по дискретным отсчетам часть информации будет потеряна, и форма восстановленного сигнала будет отличаться от формы исходного. Преобразование отсчетов непрерывного сигнала в двоичный код называется импульсно-кодовой модуляцией (ИКМ). В настоящее время этот способ получения цифровых сигналов из аналоговых наиболее распространен. Системы передачи, использующие данное преобразование сигналов, называются ИКМ системами. В иностранной литературе используется аббревиатура РСМ. Квантование амплитуды по уровням и последующая передача цифрового кода, соответствующего данному уровню, повышает надёжность передачи информации, исключается возможность искажения сигнала при передачи. В случае аналоговой передачи этого добиться невозможно, поскольку в канале всегда присутствует аддитивный шум, а спектр передаваемого сигнала искажается передаточной функцией канала.
Передача аналоговых сигналов методом ИКМ:
1. Первым этапом ИКМ является дискретизация по времени через интервалы.
2. Полученные отсчеты мгновенных значений квантуются. Квантование представляет собой округление мгновенных значений до ближайших разрешенных уровней квантования. Разность между исходным сообщением и сообщением, восстановленным по квантованным значениям, называют шумом квантования. Погрешность при представлении сигнала , не превышает половины шага квантования.
3. Полученная последовательность квантованных значений передаваемого сообщения кодируется, т.е. представляется в виде m-ичных кодовых комбинаций. Чаще всего в двоичном коде.
Особенности построения цифровых систем передачи
В большинстве развитых стран мира принят курс на построение сети на базе цифровых методов передачи и коммутации. Это объясняется следующими преимуществами цифровых методов передачи перед аналоговыми:
1. Высокая помехоустойчивость. Представление информации в цифровой форме, т.е. в виде последовательности символов с малым числом разрешенных уровней (обычно не более трех) и детерминированной частотой следования, позволяет осуществлять регенерацию (восстановление) этих символов при передаче их по линии связи, что резко снижает влияние помех и искажений на качество передачи информации. При этом, в частности, обеспечивается возможность использования цифровых систем передачи на линиях связи, на которых аналоговые системы применяться не могут.
Цифровые метода передачи весьма эффективны при разработке по световодным линиям, отличающимся относительно высоким уровнем дисперсионных искажений и нелинейностью электронно-оптических и оптоэлектронных преобразователей.
2. Слабая зависимость качества передачи от длины линии связи. В пределах каждого регенерационного участка искажения передаваемых сигналов оказываются ничтожными. Длина регенерационного участка и оборудование регенератора при передаче сигналов на большие расстояния остаются практически такими же, как и в случае передачи на малые расстояния. Так, при увеличении длины линии в 100 раз для сохранения неизменным качества передачи информации достаточно уменьшить длину участка регенерации лишь на несколько процентов.
3. Стабильность параметров каналов ЦСП. Стабильность и идентичность параметров каналов (остаточного затухания, частотной и амплитудной характеристики и др.) определяются в основном устройствами обработки сигналов в аналоговой форме. Поскольку такие устройства составляют незначительную часть оборудования ЦСП, стабильность параметров каналов в таких системах значительно выше, чем в аналоговых. Этому также способствует отсутствие в ЦСП с ВРК влияния загрузки системы на параметры отдельных каналов.
4. Эффективность использования пропускной способности каналов для передачи дискретных сигналов. При вводе дискретных сигналов (например, передачи данных) непосредственно в групповой тракт ЦСП скорость их передачи может приближаться к скорости передачи группового сигнала. Если, например, при этом будут использоваться временные позиции, соответствующие только одному каналу ТЧ, то скорость передачи дискретных сигналов будет близка к 64 кбит/с, в то время как в аналоговых системах она обычно не превышает 9,6 кбит/с.
5. Возможность построения цифровой сети связи. Цифровые системы передачи в сочетании с цифровыми коммутационными станциями являются основой цифровой сети связи, в которой передача, транзит и коммутация сигналов осуществляются в цифровой форме. При этом параметры каналов практически не зависят от структуры сети, что обеспечивает возможность построения гибкой разветвленной сети связи, обладающей высокими надежностями и качественными показателями.
6. Высокие технико-экономические показатели. Передача и коммутация сигналов в цифровой форме позволяют реализовать весь аппаратурный комплекс цифровой сети на чисто электронной основе с широким применением цифровых интегральных схем. Это позволяет резко уменьшать трудоемкость изготовления оборудования, добавиться высокой степени унификации узлов оборудования, значительно снижать его стоимость, потребляемую энергию и габаритные размеры. Кроме того, существенно упрощается эксплуатация систем и повышается надежность оборудования.
Отмеченные достоинства ЦСП в наибольшей степени проявляются в условиях цифровой сети связи. Такая сеть содержит только цифровые тракты, которые соединяются на сетевых узлах и заканчиваются цифровыми абонентскими установками. Однако построение цифровой сети в масштабах нашей страны является весьма сложной задачей, решение которой потребует длительного времени и больших капиталовложений. В настоящее время внедрение ЦСП в существующую аналоговую сеть подготавливает базу для преобразования ее в будущем в цифровую. [4, стр. 78-80]
Заключение
Основными направлениями в развитии систем передачи являются: повышение эффективности использования линии связи, увеличение дальности связи, повышение ее качества и надежности, постоянное техническое совершенствование элементов и узлов аппаратуры. Всё это включают в себя цифровые системы передачи. В этой работе выявлен ряд преимуществ цифровых систем передачи перед аналоговыми, рассмотрен принцип их действия путём импульсно-кодовой модуляции, описан принцип цифровой иерархии.
Во всем мире происходит процесс активной цифровизации в области телекоммуникаций, основанный непосредственно на ЦСП. Техника связи в нашей стране развивается в направлении создания цифровой сети на основе использования цифровых АТС, связанных между собой каналами и трактами цифровых систем передачи, работающих по проводным, радиорелейным, спутниковым и оптическим линиям связи. Кроме привычных услуг телефонной и телеграфной связи абоненты получают возможность обмениваться документами (электронная почта, телефакс) и данными для работы ЭВМ разных типов.