Смекни!
smekni.com

Розробка пасивного термодатчика (стр. 6 из 11)

Тут p‘ і p - щільності відповідно кварцу й електрода, а h і h' -товщини відповідно вібратора й електрода, нанесеного з однієї сторони пластини.

Звичайне зниження R становить не більше 0,01-0,03. Величина R визначає швидкість спаду амплітуди коливань А в міру видалення від краю електрода. Практично, якщо пьезоелемент кріпиться по периферії на відстані 10-15 h від краю електрода, добротність коливань ПР може бути збережена на рівні 50-100 тисяч.

У порівнянні із плоскими більше ефективна локалізація енергії в центрі пьєзоелементу досягається в лінзових ПР. У цих резонаторах навіть при відсутності електродів центральна область має більш низьку частоту відсічення, оскільки товщина в центрі за рахунок сферичності перевищує товщину вібратора на периферії. Різниця частот відсічення в центрі й на периферії становить у лінзах не 1—3%, як у резонаторах-пластинах, а істотно більше: у принципі, товщина лінзи на краю може бути зведена до нуля. Тому в лінзових резонаторах вдається більш якісно розв'язати край пьєзоелементу від коливань, забезпечивши цим одержання добротностей на рівні 106 — 107. Відповідно до теорії для кварцу граничні значення добротності самого матеріалу залежать від частоти й визначаються співвідношенням

Добротність кращих лінзових резонаторів близька до теоретичної межі.

2.5 Аналіз можливих варіантів побудови датчиків акустичних хвиль

В 1887 році лорд Релей відкрив режим поверхневої акустичної хвилі й у своїй класичній роботі пророчив властивості цих хвиль. Названі по імені людини їх що відкрили, хвилі Релея володіють поздовжнім і вертикальним поперечним компонентом, що може з'єднуватися із середовищем при контакті з поверхнею пристрою. Таке з'єднання сильно впливає на амплітуду й швидкість хвилі. Ця риса дозволяє датчикам ПАХ прямо оцінювати масу й механічні характеристики. Рух поверхні також дозволяє використати ці пристрої як мікроприводи. Хвиля має швидкість приблизно на 5 порядків менше ніж відповідна електромагнітна хвиля, що робить поверхневі хвилі Релея одними із самих повільних по швидкості поширення у твердих речовинах. Амплітуда хвилі становить ~10 Aнг, а довжина хвилі коливається від 1 до 100 мікронів.

На рис. 12 докладно представлено область деформації, викликана поширенням ПАХ уздовж осі Z і відповідний розподіл потенційної енергії. Тому що фактично вся енергія хвиль Релея укладена в межах однієї довжини хвилі на поверхні, датчики ПАХ мають найбільшу чутливість серед всіх розглянутих акустичних датчиків.

Зазвичай датчики ПАХ працюють у межах від 25 до 500 Мгц (рис.15). Одним з недоліків цього пристрою є те, що хвилі Релея є поверхневими нормальними хвилями, і тому вони погано підходять для виміру рідин. Коли датчик ПАХ вступає в контакт із рідиною, в результаті хвилі стиску викликають істотне загасання поверхневої хвилі.

Рис. 15. Приклади датчиків на ПАХ

Датчики акустичної хвилі комерційно доступні в декількох формфакторах. Більшість із них являє собою напівпровідникові пластини, які потім тестуются, нарізаются на кристали й упаковуються.

Якщо зріз пьезокристалла відповідним чином повернути, тоді мода хвилі міняється від датчика з вертикально-поперечною ПАХ до датчика на поперечно-горизонтальної ПАХ. Це істотно знижує втрати, коли рідини вступають у контакт із середовищем поширення, що дозволяє датчикам ПАХ працювати в якості біосенсорів.

У загальному випадку, чутливість датчика пропорційна кількості енергії, що виникає на шляху поширення хвилі. Датчики об'ємної акустичної хвилі розсіюють енергію з поверхні через речовину основи на іншу поверхню. Розподіл енергії мінімізує інтенсивність енергії на поверхні, на якій відбувається вимір. Датчики ПАХ навпаки фокусують енергію на поверхні, що робить їх більше чутливими. Інші конструкторські міркування при виборі датчиків акустичних хвиль містять у собі стабільність генератора й рівень перешкод.

2.6 Застосування датчиків

Всі датчики акустичних хвиль у тім або іншому ступені чутливі до відхилень від багатьох фізичних параметрів. Якесь із представлених на ринку датчиків представлені на фото 1. По суті говорячи, всі датчики акустичних хвиль, що випускають для індустрії телекомунікацій повинні бути герметично запечатані для запобігання будь-яких перешкод, які можуть бути обмірювані пристроєм і відповідно викличуть небажані зміни на виході.

Рис. 16. Лінія затримки

Якщо вибрати правильний напрямок зрізу матеріалу, тоді будуть переважати горизонтально поляризовані поперечні поверхневі акустичне хвилі (рис.16). У цих хвиль є зсув, паралельний поверхні пристрою.

Рівень фактору, що можуть уловити акустичні пристрої, може бути значно збільшений шляхом нанесення на пристрій покриття з матеріалів, які перетерплюють зміни в масі, пружності, або провідності під впливом яких-небудь фізичних або хімічних стимулів. Під прикладеною напругою, що міняє динамічні властивості середовища, ці датчики стають детекторами тиску, що обертає моменту, ударної хвилі й сили. Вони стають датчиками маси, або ваги, якщо часткам дозволено контактувати із середовищем поширення, міняючи напруги в ній. Вони стають датчиками випару коли застосовується покриття, що абсорбує тільки певні хімічні осадження. Ці пристрої працюють шляхом ефективного виміру маси абсорбованого осадження. Якщо покриття абсорбує певні біологічні хімічні речовини в рідинах, датчик стає біодатчиком. Як було замічено раніше, якщо вибрати правильний напрямок поширення хвилі, можна створити бездротової датчик температури. Середовище поширення міняється разом з температурою, впливаючи на дані на виході. Нижче наведені деякі найбільш загальні способи застосування датчиків акустичних хвиль.

Термодатчик будується на термозалежності швидкості поверхневих хвиль, яка визначається напрямком і типом кристалічного матеріалу, використовуваного для виробництва датчика. Термодатчики на базі генераторів лінії запізнювання ПАХ володіють міліградусною роздільною здатністю, гарною лінійністю й низькою інерцією. Вони до того ж досить чутливі до навантаження маси від власної ваги й тому повинні бути герметично упаковані. 124 Мгц термодатчик кварцу ST-зрізу приповерхньої об'ємної хвилі, як недавно стало відомо, має температурний коефіцієнт 32 ppm/ C і чутливість 0.22 C. Він також продемонстрував на три порядки меншу чутливість до навантаження маси від власної ваги, чим датчик на ПАХ. Час відповіді становить 0.3 с, що в 103 рази швидше ніж датчик ПАХ. Перевага термодатчиков також полягає в тому, що вони не вимагають елементів і вони є бездротовими, що робить їх придатними для використання у віддалених місцях.

Датчики тиску стали першою заявленою технологією використання ПАХ у сфері застосування датчиків, у 1975 році . На швидкості ПАХ сильно впливає напруга, що подається на п'єзоелектричну підкладку, по якій поширюється хвиля. У такий спосіб датчик тиску на ПАХ створений шляхом перетворення пристрою в діафрагму (див. рис. 17).


Рис. 17. Датчик тиску на ПАХ

Частоти ПАХ змінюється разом з напругою. Коли діафрагма прогинається під тиском, датчик ПАХ змінює дані на виході.

Невідшкодовані температурні коливання, які заважають роботі датчиків тиску на ПАХ може бути мінімізований шляхом приміщення зразкового пристрою виміру на ПАХ поруч із що вимірює ПАХ на ту ж підкладку й змішуючи два сигнали. Один датчик працює як термодатчик, чия близькість до датчика тиску гарантує, що обоє з них піддані однієї й тій же температурі. Однак температурний датчик на ПАХ повинен бути ізольований від напруги, якому піддається ПАХ.

Датчики тиску на ПАХ пасивні (не вимагають елементів живлення), бездротові, дешеві, витривалі, дуже компактні й легені, і відповідно добре пристосовані для виміру тиску в об'єктах, що рухаються (наприклад, шини машин або вантажівок). Ці характеристики забезпечують перевага над такими технологіями як ємнісні й пьезорезистивные датчики, яким необхідні елементи живлення і які не є бездротовими. Датчик тиску на ПАХ вагою <1м з дозволом 0.73 фунт на квадратний дюйм недавно був інтегрований у шину автомашини з відмінними результатами. Така система дозволяє операторові спостерігати тиск у кожній із шин з комфортної кабіни. Правильно надуті шини сприяють поліпшенню безпеки, більшої ощадливості палива й до більше довгого строку експлуатації самих шин. Ця технологія особливо цікава для нового ринку шин зі спущеним тиском (також називаних з нульовим тиском або розширеною маневреністю).

Датчик крутного моменту на пристрої з ПАХ, нерухомо прикріпленого до плоского місця на валу, й вал піддається крутному моменту, цей крутний момент піддає напрузі датчик і перетворює його в бездротової, пасивний, легкий датчик крутного моменту. Якщо вал обертається в одну сторону, тоді датчик перебуває в стані натягу, при обертанні в іншому напрямку датчик перебуває в стані стиску. У практичному застосуванні два датчики обертаючого моменту використаються таким чином, що їх центральні (осьові) лінії перебувають під прямим кутом один до одного (див. рис. 10). Таким чином, коли один датчик перебуває в стані стиску, інший - у стані натягу. Тому що обидва датчики піддаються одній температурі, сума двох сигналів мінімізує будь-які ефекти виходу параметрів під впливом температури.