Смекни!
smekni.com

Технические средства передачи информации (стр. 2 из 4)

Еthernet-кабель

Ethernet-кабель также является коаксиальным кабелем с волновым сопротив­лением 50 Ом. Его называют еще толстый Ethernet (thick) или жел­тый кабель (yellow ca­ble). Он использует 15-контактное стандартное включе­ние. Вследствие помехоза­щищенности является дорогой альтернативой обычным коаксиальным кабелям. Мак­симально доступное расстояние без повторителя не превышает 500 м, а общее рас­стояние сети Ethernet - около 3000 м. Ethernet-кабель, благодаря своей магистральной топологии, ис­пользует в конце лишь один нагрузочный резистор.

Сheapernеt-кабель

Более дешевым, чем Ethernet-кабель является соединение Cheaper­net-кабель или, как его часто называют, тонкий (thin) Ethernet. Это также 50-омный коаксиальный кабель со скоростью передачи информации в десять миллионов бит / с.

При соединении сегментов Сhеарегnеt-кабеля также требуются по­вторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и мини­мальные затраты при наращивании. Соединения сетевых плат производится с помо­щью широко используемых малогабаритных байо­нетных разъемов (СР-50). Дополни­тельное экранирование не требуется. Ка­бель присоединяется к ПК с помощью тройни­ковых соединителей (T-connectors).

Расстояние между двумя рабочими станциями без повторителей мо­жет состав­лять максимум 300 м, а общее расстояние для сети на Cheapernet-кабеля - около 1000 м. Приемопередатчик Cheapernet располо­жен на сетевой плате и как для гальваниче­ской развязки между адаптерами, так и для усиления внешнего сигнала

Оптоволоконные линии

Наиболее дорогими являются оптопроводники, называемые также стекловоло­конным кабелем. Скорость распространения информации по ним достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются там, где возникают электромагнитные поля помех или требу­ется передача информа­ции на очень большие расстояния без использования повтори­телей. Они обладают противоподслушивающими свойствами, так как техника ответв­ле­ний в оптоволоконных кабелях очень сложна. Оптопроводники объединя­ются в JIBC с помощью звездообразного соединения.

Показатели трех типовых сред для передачи приведены в таблице.

Показатели

Среда передачи данных

Двух жильный кабель - витая пара

Коаксиальный ка­бель

Оптоволо­кон­ный кабель

Цена

Невысокая

Относительно высо­кая

Высокая

Наращивание

Очень простое

Проблематично

Простое

Защита от про­слушивания

Незначительная

Хорошая

Высокая

Показатели

Среда передачи данных

Двух жильный кабель - витая пара

Коаксиальный ка­бель

Оптоволо­кон­ный кабель

Проблемы с заземлением

Нет

Возможны

Нет

Восприимчи­вость к поме­хам

Существует

Существует

Отсутствует

Существует ряд принципов построения ЛВС на основе выше рассмот­ренных компонентов. Такие принципы еще называют - топологиями.

4. Топологии вычислительной сети.

4.1. Топология типа звезда.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с пе­риферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими мес­тами проходит через центральный узел вычислительной сети.

Пропускная способность сети определяется вычислительной мощно­стью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.
Топология в виде звезды

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других тополо­гиях.

4.2. Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с дру­гой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией

4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Кольцевая топология

Сообщения циркулируют регулярно по кругу. Рабочая станция посы­лает по определенному конечному адресу информацию, предварительно

получив из кольца запрос.

Пересылка сообщений является очень эффектив­ной, так как большинство

сообщений можно отправлять “в дорогу” по ка­бельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информа­ции, и в случае выхода из строя хотя бы одной из них вся сеть парализуется.

Структура логической кольцевой цепи

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топо­логий. Отдельные звезды включаются с помощью специальных коммутато­ров (англ. Hub -концентратор), которые по-русски также иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабо­чими станциями применяют активные или пассивные концентраторы. Актив­ные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключи­тельно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети про­исходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управ­ление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях мо­жет нарушаться работа всей сети.

4.3. Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут не­посредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Шинная топология

Рабочие станции в любое время, без прерывания работы всей вычис­лительной сети, могут быть подключены к ней или отключены. Функциони­рование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выклю­чение и особенно подключение к такой сети требуют разрыва шины, что вы­зывает нарушение циркулирующего потока информации и зависание сис­темы.

Характеристики топологий вычислительных сетей приведены в таб­лице.

Характеристики

Топология

Звезда

Кольцо

Шина

Стоимость расширения Незначительная

Средняя

Средняя

Присоединение абонентов

Пассивное

Активное

Пассивное

Защита от отказов Незначительная

Незначительная

Высокая

Характери­стики

Топология

Звезда

Кольцо

Шина

Размеры системы

Любые

Любые

Ограниченны

Защищенность от прослуши­вания

Хорошая

Хорошая

Незначительная
Стоимость подключения Незначительная Незначительная

Высокая

Поведение системы при высоких нагрузках

Хорошее

Удовлетворитель­ное

Плохое

Возможность работы в реальном режиме времени Очень хорошая

Хорошая

Плохая

Разводка ка­беля

Хорошая

Удовлетворитель­ная

Хорошая

Обслуживание Очень хорошее

Среднее

Среднее