Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 100 из 102)

Сварку осуществляют одним или несколькими импульсами конденсаторного разряда с различной длительностью, мощностью и интервалами между импульсами. Усилие прижима электродов при сварке 0,2—1,5 Н создается в момент нагрева до максимальной температуры и снимается до окончания действия импульса тока. При этом ИМС и ПП получают незначительную термическую нагрузку. Сварку проводят на установках типа "Контакт-3А" (производительностью 250 сварок в час), ЭМ-425А, ЭМ-220, ЭМ-441 (800—2300 сварок в час) при длительности сварочного импульса 0,02—0,8 с.

1 электроды; 2 вывод ИМС;3 плата; 4 контактная площадка

Рис. 6.27. Схема сварки расщепленным электродом

К недостаткам рассмотренного способа относятся необходимость никелирования плат и золочения выводов ИМС, точное позиционирование выводов, трудность группового контактирования, более высокая стоимость по сравнению с пайкой.

Лазерную микросварку использует для проводов в полиуретановой изоляции, коваровых и никелевых выводов радиоэлементов с контактными площадками, плат, проволочных выводов ИМС внахлестку, проволоки малых диаметров из золота, меди, алюминия с напыленными на керамику, стекло, ситалл металлическими слоями и т. п. Преимущества лазерного излучения:

высокая локализация мощности в зоне нагрева (до 1000 МВт/м2); безынерционность воздействия, что позволяет вести нагрев импульсами

малой длительности (1—10 мс) и очень точно дозировать энергию излучения; очень малая зона термического влияния (0,03—0,25 мм) при минимальном

диаметре пятна нагрева 0,01 мм; не требуется вакуум, работа может выполняться в атмосфере любого

состава;

возможны соединения материалов с существенными различиями

оптических, теплофизических и механических свойств; легкость автоматизации путем применения микропроцессоров и

транспортных систем.

Источником лазерного излучения являются оптические квантовые генераторы (ОКГ), которые по агрегатному состоянию рабочего вещества подразделяются на газовые, жидкостные и твердотельные. В зависимости от способов возбуждения рабочего вещества ОКГ работают с оптической либо химической накачкой в непрерывном или импульсном режиме, а также в режиме синхронизации модуляции.

ОКГ на неодимовом стекле и рубине имеют высокую удельную мощность (до 10 000 МВт/м2), однако их применение ограниченно из-за низких эффективности и частоты следования импульсов. ОКГ на алюмоиттриевом гранате (АИГ) имеют рабочую длину волны 1,06 мкм и обеспечивают удельную мощность до 1000 МВт/м2 в сочетании с высокой частотой следования импульсов (до 20 Гц) благодаря низкому порогу накачки и хорошей теплопроводности рабочего вещества. Газовый лазер на СО2 работает с еще большей эффективностью как в непрерывном, так и в импульсном режиме, однако его излучение длиной волны 10,6 мкм хорошо отражается металлами.

Алюмоиттриевый гранат — монокристаллический материал, выращенный с ориентацией по кристаллографической оси <100>. Он представляет собой соединение Al2O3 и отличается очень высокой теплопроводностью (0,13 Вт/(см·К)), малым коэффициентом теплового расширения (6,96·10–6 К–1 ), высокой механической прочностью (175 МПа), а также малым порогом возбуждения. Для генерации излучения в состав АИГ вводятся активизирующие ионы трехвалентного неодима — элемента из группы лантанидов — в количестве 0,5— 1 %.

Мощность лазерного излучения 125 Вт достигается благодаря использованию двух активных элементов в излучателе. Коэффициент пропускания выходного зеркала (до 20 %) является оптимальным и обеспечивает максимальную мощность лазерного излучения при номинальной силе тока, проходящего через лампу накачки. Активный элемент и лампа накачки размещаются в непосредственной близости друг от друга и помещаются в отражатель, повышающий долю энергии светового излучения лампы.

Основным элементом излучателя является квантрон, в состав которого входят активный элемент, отражатель, корпус, штуцера охлаждения, фланцы и втулки крепления. Отражатель представляет собой моноблок из легированного европием кварцевого стекла в форме эллиптического цилиндра с полированной боковой поверхностью, покрытой слоем серебра. На внешний слой моноблока нанесено защитное покрытие из меди и никеля.

Кварцевое стекло отражателя с легирующими добавками не пропускает вредное для активного элемента ультрафиолетовое излучение лампы накачки, что позволяет использовать во внутреннем контуре системы охлаждения лазера дистиллированную воду без каких-либо фильтрующих добавок и тем самым значительно повышает эксплуатационные свойства лазера. Благодаря эллиптической форме отражателя распределение энергии накачки по сечению активного элемента имеет максимум в центральной части, что увеличивает эффективность генерации излучения.

Активный элемент типа ГП 6,3х100 выполнен в виде круглого стержня диаметром 6,3 мм и длиной 100 мм, изготовлен из монокристалла АИГ, активированного трехвалентными ионами неодима. Резонатор излучателя образован двумя зеркалами с многослойными диэлектрическими отражающими покрытиями. Основу зеркал составляют подложки, имеющие вид шайб диаметром 40 мм, толщиной 4 мм, изготовленные из стекла КУ-1. Выходное зеркало имеет коэффициент пропускания 20 2 %, а глухое — не менее 0,2 %. Изменение положения поверхности зеркала относительно оси лазерного излучения (юстировку) осуществляют путем поворота юстировочных винтов.

Система охлаждения лазера — жидкостная двухконтурная с теплообменным устройством типа "вода—вода" и термостабилизацией охлаждающей жидкости, циркулирующей по замкнутому контуру с помощью жидкостного насоса. Наряду с хорошими теплофизическими характеристиками, доступностью и безопасностью охлаждающая вода имеет высокие стабильные коэффициенты пропускания излучения, оптической накачки и способностью отфильтровывать инфракрасную часть спектра. Во внутреннем контуре используют только дистиллированную воду.

Средняя мощность излучения в импульсе

PE /t ,

где Е — энергия излучения; t — длительность импульса. При непрерывном излучении лазера длительность воздействия

td /v ,

где d — диаметр луча; v — скорость сканирования платы относительно луча. Тогда средняя мощность излучения P E v/ d , а средняя плотность мощности излучения для луча круглой формы q 1,27 E v/d .

Для оценки мощности лазерного излучения используют измеритель средней мощности и энергии импульсов ОКГ ИМО-2, имеющий погрешность 10 %.

Промышленность выпускает ряд автоматов лазерной сварки и пайки с программным управлением на базе лазера ЛТН-102А: для сварки — установки типа "Квант-10", "Квант-12" с энергией излучения до 15 Дж и частотой 60 импульсов в секунду, для пайки — ПЛП-2, "Квант-50", "Квант-52" производительностью до 330 соединений в минуту и мощностью излучения 125 Вт.

К недостаткам лазерного излучения как активирующего фактора при пайке и сварке относятся: сложность технологического оборудования; нестабильность лазерного излучения во времени; особые требования техники безопасности; возможность термической деструкции диэлектрического основания печатной платы из-за значительного поглощения лазерного излучения этими материалами; большая энергоемкость, малый КПД ( около 1 %); повышенные требования к точности изготовления плат; необходимость точного совмещения платы с фокальной плоскостью лазера.

При монтажной микросварке не допускаются следующие дефекты: обрыв проволочного вывода и пересечение выводов; утончение вывода более 1/4 диаметра; расстояние между привариваемыми проволоками меньше трех диаметров проволоки; высота петли более 0,3 мм над уровнем кристалла; сильное натяжение, изгиб проволочного провода, приводящий к соприкосновению его с кристаллом; длина свободных концов проволоки более одного диаметра в соединении с контактными площадками кристалла и более трех диаметров — с траверсами; смещение сварных соединений за пределы контура траверсы.

6.7. НАКРУТКА И ОБЖИМКА

Монтаж накруткой, предназначенный для получения электрических соединений одножильных проводов со штыревыми выводами разъемов, был разработан в США в 1952 г. фирмой Bell Lab's и широко применяется для электрического монтажа блоков, панелей и рам ЭВМ. Монтаж накруткой исключает применение припоев и флюсов, ускоряет процесс межблочного монтажа, повышает надежность соединений по сравнению с паяными, создает возможность автоматизации межблочного монтажа.

Контактное соединение накруткой — соединение неизолированного одножильного провода со штыревым выводом, имеющим острые кромки, при котором провод навивается на вывод с определенным усилием (рис. 6.28). При этом кромки штыря, частично деформируясь, врезаются в провод, разрушая на нем оксидную пленку, и образуют газонепроницаемое соединение. Концентрация напряжений в зонах контакта и среднее давление порядка 170 МПа обусловливают взаимную диффузию металлов, что способствует повышению надежности соединений. Срок службы соединений при нормальных климатических условиях 15—20 лет.