Особо большие возможности дает использование ПЗС при фильтрации сложных сигналов. В литературе, например, описан фильтр для 13элементного фазоманипулированного сложного дискретного сигнала, сформированного по коду Баркера. Представление кода такого сигнала показано на рис. 1.10.11.
Сигнал имеет практически равномерный амплитудно-частотный и сложный фазочастотный спектры. Следовательно, согласованный фильтр должен иметь простую амплитудно-частотную характеристику и сложную фазочастотную. Раньше согласованный фильтр для такого сигнала формировался из 13 элементов линии задержки. Если длительность сигнала, а следовательно, время задержки в элементах были
124
значительными, например, если сигнал имел длительность 1000 мкс, то требовалась очень дорогая, с большой массой линия задержки. Реализация такого фильтра на ПЗС отличается простотой, малыми габаритами и массой. Действительно, фильтр может содержать всего 13 элементов, т.е. 13X3 МДП-конденсаторов.
Рисунок 1.10.12
Импульсная характеристика согласованного фильтра ηф(t) будет обратна форме сигнала и дана на рис. 1.10.12. Как видно, съем напряжений с отводов (электродов) фильтров должен происходить с коэффициентами положительными или отрицательными, равными единице, т.е. менять положение зазора не нужно, отводы могут быть не разрезаны в отличие от предыдущего случая. Следовательно, при проектировании фильтра все электроды выполняются целыми, а отводы от них, соединяемые с плюсовой или минусовой шиной, которые подаются на выходной дифференциальный усилитель, должны присоединяться в соответствии с импульсной функцией. В результате получается согласованный фильтр, имеющий требуемые амплитудно-частотную и фазочастотную характеристики, обеспечивающий сжатие сигнала в соответствии с его корреляционной функцией.
Недостатки фильтров на ПЗС. Основным недостатком устройств фильтрации на ПЗС является ограничение следующих параметров: числа последовательных элементов задержки вследствие неполного переноса заряда; максимального времени задержки, т.е. минимальной частоты, связанной с тепловым генерированием свободных носителей заряда; максимальной тактовой частоты из-за конечного времени переноса заряда между электродами; точности реализации частотной характеристики фильтра за счет технологических погрешностей.
Рассмотрим подробнее эти ограничения. При каждой передаче заряда происходит частичная его потеря. Каждый раз, когда заряд передается с (N—1)-го электрода на N-й, часть заряда ε остается не переданной. Тогда значение заряда под N-м электродом относительно заряда под первым электродом составит
125
(1– ε)N = e-Nε.
Для того чтобы потери заряда при переносе или, другими словами, неэффективность переноса оказывались малыми, необходимо обеспечить Nε<0,1. Следовательно, если мы хотим иметь ПЗС с 1000 элементами задержки, то неэффективность переноса должна составить меньше 10-4.
Очевидно, что неэффективность переноса приведет к некоторым искажениям частотной характеристики, тем большим, чем больше произведение Nε. Реально неэффективность переноса составляет 10-3 ... 10-5, т. е. создание фильтра на 100 ... 1000 элементов задержки с частотными характеристиками, достаточно близкими к теоретическим, вполне осуществимо.
Время, в течение которого неосновные носители вследствие тепловых эффектов составят заметную долю передаваемого заряда, определяется в основном технологией и составляет для обычного ПЗС порядка 10-1 . . . 10-2 с. Следовательно, низшая частота, на которой может работать фильтр на ПЗС, составит 10 . . . 100 Гц. Следует ожидать, что по мере совершенствования технологии и повышения чистоты материалов низшие частоты могут быть доведены до единиц герц.
Время, необходимое для переноса заряда, определяется шириной электродов и промежутка между ними, амплитудой тактовых импульсов и подвижностью носителей заряда. Очевидно, что размеры определяются технологией. При повышении тактовой частоты, т.е. при работе фильтра на более высоких частотах, резко увеличивается неэффективность переноса. В настоящее время технология достигла такого совершенства, что можно использовать ПЗС на частотах порядка 20 МГц.
Фильтр на ПЗС создает шум. Его необходимо учитывать, если ПЗС применяется для сигналов с малым уровнем, т.е. во входных устройствах приемников. Шум в основном определяется неодинаковостью теплового тока в разных элементах; уровень шума может составлять от нескольких до сотен микровольт. Поэтому применение фильтров на ПЗС во входных каскадах не рекомендуется.
Форму частотной характеристики фильтра на ПЗС не удается сделать точно соответствующей расчетной, так как коэффициент съема информации не может быть выдержан с высокой точностью. Ширина напыленных электродов, особенно если они узкие, положение зазора, разделяющего электроды, имеют технологические отклонения. Точность, с которой реально удается реализовать коэффициенты, составляет, примерно, 10-2 … 10-3. При этом очень важно то, что при увеличении числа МДПконденсаторов влияние неидеальности отводов и весовых коэффициентов уменьшается в соответствии с корнем квадратным из их общего числа. Это происходит из-за усреднения отклонений.
126
1.11 ЭЛЕМЕНТЫ УСТРОЙСТВ ПАМЯТИ В РЭС.
ЭЛЕМЕНТЫ ПАМЯТИ НА МАГНИТНЫХ НОСИТЕЛЯХ
Предназначены для хранения цифровой информации. Элемент памяти должен обладать двумя свойствами: иметь два устойчивых состояния и позволять записывать и считывать информацию. В элементах памяти используются следующие физические принципы:
1. Намагничивание (в ЗУ на ферритовых сердечниках, лентах, магнитных дисках, магнитных барабанах, ЦМД и др.).
2. Хранение электрического заряда на емкости (ПЗС ЗУ, ДОЗУ).
3. Схемотехнические решения (триггеры, полупроводниковые статические ЗУ).
4. Поляризация (у сегнетоэлектриков).
5. Механическое изменение носителя информации (перфоленты, перфокарты и различные типы программируемых ЗУ).
6. Временная задержка (в магнитострикционных ЛЗ, электромагнитных ЛЗ). Наибольшее распространение получили 1-ый, 2-ой и 3-ий эффекты.
КЛАССИФИКАЦИЯ ЗУ
По функциональному назначению ЗУ делятся на:
1) Внутренняя память; 2) внешняя память; 3) буферная; 4) оперативная; 5) сверхоперативная; 6) экранная; 7) видеопамять; 8) память данных и др. Общая схема ЗУ имеет вид:
ШАВР Шд ⁄ вых
ША[n] – шина адреса; Шд – шина данных; ВР – выбор режима; В зависимости от метода доступа ЗУ делятся на:
1. ЗУ с прямым поступом (ЗУ с произвольной выборкой). В них каждая ячейка имеет свой адрес и по нему осуществляется доступ к ячейке. Примеры: ЗУ на ферритовых сердечниках, полупроводниковые ЗУ – статические и динамические.
2. ЗУ с блочно-прямым доступом. В них выборка блока осуществляется непосредственно, а выборка ячейки – путем последовательного сдвига или опроса всех ячеек. (ПЗС ЗУ с блочно-петлевой организацией, ЗУ на магнитных дисках).
3. ЗУ с последовательным доступом (ЗУ на магнитной ленте, серпантинно-петлевые ЗУ).
В зависимости от особенностей хранения, записи и считывания ЗУ делятся:
127
1. Постоянные (ПЗУ), служащие для хранения констант и программ. Основными требованиями к ПЗУ являются неразрушающее считывание, высокая надежность и энергонезависимость хранения информации.
В свою очередь ПЗУ разделяются на:
а) Репрограммируемые (программируемые многократно) – РПЗУ;
б) Перепрограммируемые (однократно) – ППЗУ, как правила путем пережигания перемычек током высокой плотности на кристаллах с некоторой избыточностью элементов;
в) ПЗУ, программируемые при изготовлении (конструктивно).
В ППЗУ и РПЗУ время записи значительно превышает время считывания информации.
2. Логические ЗУ (ЛЗУ) кроме хранения информации могут выполнять некоторые логические функции, что позволяет частично разгрузить процессор.
3. Оперативные ЗУ (ОЗУ) предназначены для хранения переменной информации и имеют одинаковое время записи и считывания.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЗУ
1. Информационная емкость (объем памяти), выражаемая максимальным количеством хранимой информации в битах или байтах;
2. Быстродействие, характеризуемое временем, прошедшим от момента обращения к ЗУ до появления требуемой информации на выходе, или количеством информации, воспроизводимой в единицу времени (Мбит/с). Еще употребляют термины: время выборки, время доступа.
3. Энергопотребление ЗУ, определяемое электрической мощностью потребляемой от источников питания на единицу информационной емкости
(Вт/бит).
4. Удельная стоимость, т.е. стоимость хранения одного бита.
5. Плотность упаковки (количество информации в битах/см3).
6. Энергозависимость.
Элементы памяти на ферритовых сердечниках являются представителем устройств памяти с прямым доступом. Они появились в 1950-х годах.
Петля гистерезиса и схема записи информации показаны на рис.
IвхВх
Для считывания информации, находящейся в сердечнике, во входную обмотку подается импульс. Если сердечник был в состоянии "1", то на выходной обмотке появляется э.д.с. большой амплитуды, если "0" – то на выходе имеется небольшая э.д.с. помехи.
В ЗУ имеются адресные шины X и Y. Выборка нужной ячейки основана на совпадении токов в горизонтальных и вертикальных шинах. На эти шины