Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 42 из 102)

Интегрально-оптическая схема (ИОС), интегральная схема, в которой связь между элементами осуществляется с помощью световых сигналов. Различают монолитные и гибридные ИОС Монолитные ИОС создают на одной подложке в едином технологическом. цикле (рис. 1). Для изготовления монолитных ИОС используются в основном полупроводниковые соединения типа АВ (напр., GaAs) и твѐрдые растворы на их основе, а также монокристаллы диэлектриков, обладающих электро-, акусто- или магнитооптическими свойствами (напр., ниобата или танталата лития, гранатов). Гибридные ИОС (Рис. 2) создают прецизионной сборкой отдельных интегрально-оптических элементов. В ИОС в качестве источников оптического излучения используются полупроводниковые лазеры ( инжекционные лазеры), в качестве приѐмников оптического излучения — интегрально-оптические фотодиоды, фототранзисторы и фоторезисторы.

Рисунок 1.17.2. Интегрально-оптическая схема многочастотного излучателя: 1— инжекционный лазер; 2-интегрально-оптическое зеркало оптического резонатора лазера; 3— направленный ответвитель; 4 — интегральнооптический волновод.

ИОС применяют в волоконно-оптических линиях связи, в системах оптической обработки информации и др. системах в качестве оптических передающих и приѐмных модулей; анализаторов спектра радиосигналов; логических устройств; аналого-цифровых преобразователей; усилителей и др.

Рисунок 1.17.3. Гибридная интегрально-оптическая схема анализатора спектра радиосигналов: 1—подложка из LiNbO; 2— инжекционный лазер; 3 — линза; 4 — фотоприѐмники; 5—- встречно-штыревой преобразователь.

1.17.2 Интегрально-оптические элементы

Интегрально-оптические элементы (ИОЭ), миниатюрные оптические и оптоэлектронные устройства, выполненные с применением групповой (интегральной) технологии; предназначены для передачи и обработки световых сигналов. Обычно ИОЭ входят в состав интегрально-оптической схемы, реже используются как самостоятельные (дискретные) устройства. Основу ИОЭ. составляет интегрально-оптическии волновод — тонкий световедущий слой, создаваемый обычно в поверхностном слое либо в объѐме диэлектрической или полупроводниковой (ПП) подложки; источником излучения служат, как правило, инжекционные лазеры.

Существуют различные типы., которые подразделяют на 3 основные.. группы— т. н. пассивные, элементы управления излучением и элементы преобразования энергии (электрической в световую и наоборот). В пассивных ИОЭ осуществляются преобразования в основном пространств, характеристик световых сигналов без увеличения их энергии и изменения спектрального состава излучения. К ним относятся устройства ввода и вывода излучения, ответвители, линзы, фильтры, преобразователи типов колебаний и др. Интегрально-оптические устройства ввода и вывода излучения обеспечивают согласование световых потоков при введении излучения в интегральнооптический волновод и выведении его из волновода во внеш. пространство. К этим элементам относятся фазовые дифракционные решѐтки, создаваемые на планарных интегрально-оптических волноводах (рис. 1), полосковые волноводы с суживающимся краем (рис. 2) и т. н. рупорные волноводы (рис. 3). Интегрально-оптические ответвители осуществляют разделение светового потока на нескольких каналов и состоят из дифракционных решѐток в планарных интегрально-оптических волноводах или из канальных 199 разветвляющихся полосковых волноводов (рис. 4).

Интегрально-оптические линзы фокусируют оптическое излучение, распространяющееся в планарном волноводе. Наибольшее распространение получили интегрально-оптические линзы трѐх типов: т. н. геодезические, представляющие собой углубления на поверхности волновода (рис. 5), линзы Люнеберга, выполненные в виде области с показателем преломления, большим, чем показатель преломления световедущего слоя планарного волновода (рис. 6), и линзы Френеля, состоящие из дифракционных решѐток с переменным шагом (рис. 7), фактически являющиеся голографическим элементом связи. Для спектральной селекции оптического излучения, распространяющегося в интегрально-оптическом волноводе, служат интегрально-оптические фильтры, состоящие из дифракционных решѐток, кольцевых интерферометров и резонаторов Фабри-Перо. Интегрально-оптические преобразователи типов колебаний изменяют пространственное распределение оптического излучения; они содержат, как правило, интегрально-оптические волноводы, выполненные на основе анизотропных материалов, либо волноводы с изменяющимся (по длине) профилем распределения показателя преломления.

В ИОЭ управления излучением (модуляторах, переключателях, дефлекторах) производится изменение амплитуды, фазы или направления распространения световых волн под действием управляющего напряжения, изменяющего показатель преломления световедущего слоя волновода за счѐт электро-, акусто- или магнитооптических эффектов. Наиболее широко применяются интегрально–оптические модуляторы амплитуды светового излучения типа интерферометров Маха–Цандера, изготовляемых из электрооптических материалов. Основу таких интерферометров составляет интегрально– оптический волновод, разветвляющийся на входе устройства на два канала, которые вновь объединяются в один на выходе (рис. 8). В каналах при подаче управляющих сигналов изменяются фазы световых волн, что при объединении световых потоков приводит (в результате интерференции) к изменению амплитуды световой волны в выходной части волновода. В интегральнооптических переключателях осуществляется управляемое перераспределение оптического излучения между интегрально-оптическими волноводами. В переключателях на связанных волноводах (рис. 9) переключение канала распространения происходит в результате изменения (под действием управляющего напряжения) показателя преломления области связи между волноводами. В переключателях, использующих эффект полного внутреннего отражения (рис. 10), при подаче напряжения на управляющие электроды, расположенные на поверхности подложки, между электродами образуется область с уменьшенным показателем преломления. Излучение из волновода попадает на эту область, в результате полного внутреннего отражения меняет направление своего распространения и переходит в другой волновод. Действие интегральных акустооптических модуляторов (дефлекторов) основано на изменении направления распространения световых волн в планарном интегрально-оптическом волноводе в результате дифракции света на регулярных неоднородностях, создаваемых поверхностными акустическими волнами (рис. 11). ПАВ возбуждаются радиосигналами с помощью встречноштыревой системы электродов. В интегрально-оптических преобразователях частоты, основу которых составляют волноводы, выполненные из нелинейнооптических материалов, используются гл. обр. эффекты смешения световых частот .

В ИОЭ преобразования энергии производятся генерация, усиление и детектирование оптических сигналов. Генерация оптического излучения осуществляется в интегрально-оптическом волноводе в результате рекомбинации электронно-дырочных пар в области р—n-перехода ПП излучателя (напр., в лазерах), межуровневых переходов в некоторых кристаллах, (напр., Nd) и т. д. Оптическое усиление возникает при прохождении световых сигналов в волноводах с инверсной населѐнностью энергетических уровней (рис. 12). Обратное преобразование энергии осуществляется в фотоприѐмнике на основе интегрально-оптических фотодиодов, фоторезисторов или фототранзисторов, обычно непосредственно сопряжѐнном с интегральнооптическим волноводом (рис. 13).

Использование ИОЭ. обеспечивает значительное (на несколько порядков) снижение мощности, необходимой для электронного управления световыми потоками, по сравнению с обычными (объѐмными) оптическими и оптоэлектронными элементами.

В настоящее время ИОЭ применяются главным образом в монолитных и гибридных интегрально-оптических схемах, предназначенных для передающих и приѐмных модулей волоконно-оптических линий связи. На основе ИОЭ созданы также гибридные интегрально-оптические процессоры для анализа спектрального состава радиосигналов.

201

Рисунок 1. Схема интегрально оптического элемента связи на основе дифракционных решѐток: 1—диэлектрическая или полупроводниковая

подложка (из LiNbO3, CaAlAs и др.); 2—

планарный интегральнооптический волновод;

3—фазовые дифракционные решѐтки, созданные на поверхности волновода методами фото- или

электронно-лучевой

литографии; 4—световые потоки; n1 и n2 — показатели преломления подложки и световедущего слоя соответственно.

Рисунок 2. Схема

интегрально-оптического волновода с суживающимся краем: 1—диэлектрическая или полупроводниковая

подложка (например, из

LiNbO3); 2 —

интегрально-оптический волновод; 3—

суживающийся край световедущего слоя; 4— световые потоки.

Рисунок 3. Схема интегрально-оптического элемента связи с использованием рупорных переходов: 1—подложка; 2—интегрально-оптический волновод с плавно меняющейся шириной поперечного сечения (рупорный волновод); 3—рупорные переходы; 4—световые потоки.

Рисунок 4. Схема интегрально-оптического Y-разветвителя: 1—подложка; 2—канальный, разветвляющийся интегрально-оптический волновод; 3—световые потоки.

Рисунок 5. Схематическое изображение геодезической линзы: 1—подложка; 2— планарный интегрально-оптический волновод; 3—углубление не поверхности волновода; 4—световые потоки.