Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 45 из 102)

Конфигурация электродов индикатора определяется либо формой исходных стеклянных пластин, либо технологией металлизации. Как правило, пластины и электроды плоские, но в ряде приборов внутренняя поверхность задней пластины имеет сложную форму, обеспечивающих отражение излучения направлений источника света.

В ЖКИ на основе ДР, при приложении электрического поля напряжѐнностью 5 кВ/см (примерно 30 В к плѐнке ЖК толщиной 0,25 мм) молекулы переориентируются, возникает турбулентность и сильное оптическое рассеивание. Материал, прозрачный в отсутствии поля, становится непрозрачным.

В ЖКИ на основе ТЭ, работающим на отражение, стеклянные пластины расположены между двумя скрещенными поляризаторами, за задним из которых помещѐн диффузный отражатель. В отсутствии поля свет в индикаторе следует за вращением молекул и на выходе индикаторов его поляризация оказывается повѐрнутой на 90°, свет проходит через индикатор. При наличии поля ориентация молекул изменяется, плоскость поляризации не вращается и свет не проходит через индикатор. Так как отражатель диффузный, на слабоокрашенном сером фоне отображаются тѐмные знаки.

В ЖКИ на основе ТЭ, работающим на просвет, поляризаторы устанавливают так, чтобы их плоскости поляризации были параллельны друг другу. Тогда индикатора не пропускает свет в отсутствии поля.

Опыт практического применения ЖКИ обоих типов показал их конкурентноспособность с другими классами индикаторов. К числу достоинств таких ЖКИ относится высокая эффективность. Индикаторы на основе ДР характеризуются уровнем потребляемой мощности 5…10 мкВт/см2 для постоянного тока (0,5…1 мкА/см2) и 50…200 мкВт/см2 для переменного тока (2…10 мкА/см2). Для индикаторов на основе ТЭ потребляемая мощность составляет не более 20 мкВт/см2. По экономичности ЖКИ на много превосходят современные светоизлучающие диоды. К достоинствам ЖКИ на эффектах ДР и ТЭ можно отнести способность сохранять и увеличивать контраст изображения при повышении уровня внешней освещѐнности, прямую совместимость с КМОП-ИМС, обеспечивающую возможность низковольтного управления ЖКИ.

Индикаторы на эффекте ДР и ТЭ преимущественно применяются там, где экономичность играет решающую роль: в электронных наручных часах, МК с автономным питанием, портативных индикаторах и тестерах и т.п.

В ЖКИ на эффекте Г-Х тонкий слой ЖК – «хозяина» взаимодействуют с молекулами «гостя». Слой ЖК за счѐт поглощения световой энергии при отсутствии поля приобретает характерную для красителя (гостя) окраску; под воздействием поля он обесцвечивается. Но существуют так же вещества гостя и хозяина, в которых окрашивание происходит под воздействием поля. Цветовые различия в индикаторах на эффектах Г-Х хорошо воспринимаются в условиях высокой освещѐнности даже при небольшом яркостном контрасте.

ЖКИ, предназначены для работы в условиях низкой освещѐнности (менее 35 кд/м2) работают с подсветкой.

а) б) в)

Рисунок 1.18.3. Конструкция ЖКИ с подсветкой.

Для подсветки используют лампы накаливания со средней мощностью 0,5 Вт для знака высотой 2,5 см. Подсветка реализуется разными способами: для удобства наблюдения свет лампы проходит через жалюзи (а); для увеличения угла обзора применяют 2 лампы (б); для уменьшения габаритов – встроенной сверхминиатюрной лампой (в).

1.19 ПРИБОРЫ НА ЭФФЕКТЕ ГАННА

В 1963 г. американским физиком Ганном в полупроводниках – арсениде галлия GaAs и фосфиде индия InР с электронной электропроводностью было обнаружено явление генерации высокочастотных колебаний электрического тока в случае приложения к образцу постоянного напряжения, превышающего некоторое критическое значение. Оказалось, что частота колебаний зависит от длины образца и лежит в диапазоне нескольких гигагерц. Поскольку генерация высокочастотных колебаний в объеме не связана с наличием тонких и маломощных p-n-переходов, на приборах Ганна удалось построить СВЧ - генераторы значительно большей мощности, чем на других полупроводниковых приборах.

Генераторы Ганна, выполненные в форме квадратов со стороной 100—150 мкм, дают мощность в непрерывном режиме порядка нескольких милливатт на частотах 1—25 ГГц. Эти генераторы могут работать и в импульсном режиме, обеспечивая импульсную мощность порядка нескольких сотен ватт при к.п.д. 5—25%. Модификацией генератора Ганна является генератор с ограничением накопления объемного заряда (ОНОЗ). В режиме ОНОЗ кристалл арсенида галлии включается последовательно с колебательным контуром и нагрузочным резистором, Наличие контура обеспечивает легкость перестройки частоты. Переменное напряжение на контуре достаточно велико для того, чтобы во время отрицательной полуволны напряжение на образце падало ниже критического значения. При этом домен успевает разрушиться, так как время диэлектрической релаксации в слабом поле мало (порядка 1012 с) по сравнению с периодом колебаний. В режиме ОНОЗ удается достигнуть большей мощности и на более высоких частотах (до сотен гигагерц) благодаря тому, что во время положительной полуволны домен не успевает сформироваться и в большей части образца дифференциальная проводимость остается отрицательной.

На эффекте Ганна, используется падающий участок вольтамперной характеристики, можно построить также СВЧ - усилитель. Например, усилитель на частоте 23—31 ГГц дает усиление по мощности 20 дБ.

Прибор па эффекте Ганна может быть использован как элемент логических схем. Быстродействие таких схем весьма высокое — несколько десятков пикосекунд на каскад. На рис. 1.19.1 показана простейшая схема импульсного усилителя на эффекте Ганна в триггерном режиме. В этой схеме напряжение батареи .п. выбрано так, что искажение на приборе Ганна U Uи.п. IRн меньше Ut, не больше Ua (Utи Ua — пороговые напряжения возникновения и исчезновения доменов). При подаче на вход усилителя короткого импульса с длительностью меньше пролетного времени с амплитудой Un>UtUo прибор Ганна на время, равное пролетному времени То, переключается в состояние со сформированными доменами. Ток через прибор Ганна и сопротивление включенного последовательно с ним резистора нагрузки падают, благодаря чему образуется выходной импульс с полярностью, противоположной входному импульсу, и длительностью, равной пролетному времени То. Такой усилитель может выполнять логическую операцию сравнения амплитуды импульса UHс заданной величиной UtU0. Кроме того, он может быть использован как дискриминатор выходных импульсов по их ширине и амплитуде. П р и наличии дополнительного входа, показанного на рис. 1.91.1 пунктиром, схему усилителя можно использовать в качестве элемента ИЛИ, если прибор Ганна переключается одним импульсом, поданным на любой из входов.

На эффекте Ганна могут быть созданы схемы, которые переводятся в режим

Рисунок 1.19.1 Схема

самоподдерживающейся генерации импульсного усилителя на одиночным включающим импульсом. Эта

генерация может быть прекращена подачей эффекте Ганна в триггерном режиме.

импульса противоположной полярности. Такие схемы могут осуществлять

функции элемента памяти.

Функциональные приборы, построенные на эффекте Ганна, не имеют p-nпереходов и отдельных элементов. Они выполняют свою функцию только благодаря свойствам материала и форме образца. Так, если изготовить кристалл арсенида галлия специальной формы то движущиеся домены можно использовать для генерации импульсов практически любой формы.

Приборы, основанные на эффекте Ганна, в генераторных схемах работают на сверхвысоких частотах при больших выходных мощностях (более нескольких киловатт в импульсном режиме).

Простейшая конструкция прибора Ганна изображена на рис. 1.19.2, а. Прибор выполнен из пластины высокоомного арсенида галлия, на которую напыляются низкоомные омические контакты с последующим вплавлением. Такая конструкция не совсем технологична, так как есть определенные трудности в нанесении контактов и организации теплоотвода.

Создавая переменное сечение прибора Ганна, можно получить зависимость выходного тока прибора от формы образца (рис. 1.19.2, б) и осуществить генерацию колебаний специальной формы (треугольной, трапецеидальной).


В образце пирамидальной формы электрическое поле уменьшается от катода к аноду. Поэтому при сравнительно малых напряжениях смещения домен распространяется только в ту часть прибора вблизи катода, в которойUсмUa . С повышением напряжения смещения дрейфовый путь домена увеличивается, а частота колебаний соответственно уменьшается. При дальнейшем повышении напряжения домен достигает анодa, после чего частота колебаний практически перестает зависеть от напряжения смещения. Осциллограмма тока, генерируемого прибором Ганна, показана на рис.

1.19. 2 б .