Рис. 1.1.4 Общий вид вольт-амперных характеристик различных аморфных материалов
Анализ вольт-амперных характеристик аморфных материалов показывает, что их проводимость в ряде случаев скачком изменяется на несколько порядков и сохраняется в таком состоянии неограниченно долго. Эти свойства аморфных материалов уже дали возможность построить пороговые переключатели, ячейки памяти, перестраиваемые ключи памяти с двумя устойчивыми состояниями. На основе аморфных полупроводников развиваются перспективные приборы — туннельные пленочные эмиттеры (рис. 1.1.5). По внешнему виду эти приборы почти не отличаются от конденсаторных структур типа «металл — диэлектрик — металл», однако принцип их работы иной. Пленка диэлектрика очень тонкая, способная пропускать токи до 0,01 А, верхний электрод также достаточно тонкий (не более 50 нм). Принцип работы пленочных эмиттеров следующий. Электроны из катода (толщиной порядка 0,5 мкм) попадают в диэлектрик и в зависимости от толщины аморфной пленки диэлектрика разгоняются в нем до больших скоростей либо рассеиваются со значительным потерями энергии. Толщину диэлектрика выбирают минимальной, однако такой, чтобы сохранялась сплошная структура пленки и не было частичных микропробоев диэлектрика. Рабочая толщина диэлектрика обычно не превышает 40 нм. Так называемые горячие электроны просачиваются через потенциальный барьер и мигрируют через наружный электрод в вакуум. Пленочная структура металл — диэлектрик — металл выполняет фактически функцию холодного катода, который в отличие от обычных катодов почти не шумит, обладает повышенной радиационной стойкостью и очень малыми размерами при большом токе эмиссии с единицы поверхности.
Отметим, что интервал рабочих температур аморфных переключателей и ячеек памяти составляет от -180 до +180°С.Представляют большой интерес функциональные элементы с управляемым отрицательным сопротивлением на основе аморфных материалов. Эти приборы можно подразделить на две категории: 1) приборы, управляемые
Рисунок 1.1.5. Структура накаливаемого пленочного эмиттера: 1 – подложка; 2 – алюминий, золото или вольфрам; 3 – золото; 4 – SiO2 или Al2O3; 5 – алюминий; 6 – грунтующий подслой из SiO2 | током и обладающие отрицательным дифференциальным сопротивлением (приборы с S-образной характеристикой); 2) приборы, управляемые напряжением и обладающие эффектом памяти |
(приборы с N-образной характеристикой). Первый тип приборов реализуется на пленках окислов Та, Ti, Nb, второй — на пленках диэлектриков, содержащих окислы, сульфиды и флюориды.
11. Когерентные свойства сигнала для создания ряда новых твердотельных функциональных приборов: генераторов синусоидальных колебаний, усилителей, умножителей, преобразователей частоты, фазовращателей, трансформаторов, линий задержки, нейристорных линий, логических элементов, ячеек памяти и т. д. Следует особо выделить специфическое физическое явление, основанное на квантовых когерентных свойствах носителей заряда — эффект Джозефсона. Суть его состоит в том, что через достаточно тонкую (порядка 2 нм) диэлектрическую прослойку между сверхпроводящими слоями при низких температурах даже в отсутствие разности потенциалов может протекать своеобразный туннельный ток, легко управляемый сравнительно слабыми внешними сигналами. Значения параметров приборов, основанных на этом эффекте, существенно превышают значения соответствующих параметров приборов интегральной микроэлектроники. Исследования показали, что быстродействие отдельных приборов на эффекте Джозефсона достигает 20 — 30 пс, а мощность рассеяния равна 100 нВт, т. е. во много раз меньше, чем в обычных интегральных микросхемах. Основная трудность при изготовлении таких приборов — получение стабильного диэлектрика при толщинах порядка 2 нм.
Принцип действия резисторов основан на использовании свойств материалов оказывать сопротивление проходящему электрическому току.
По назначению резисторы могут быть общего назначения, прецизионные, высокочастотные, высокомегаомные, высоковольтные и специальные, а по эксплуатационным характеристикам – термо- и влагостойкими, вибро- и ударопрочными, высоконадежными, повышенной ―высотности‖.
По виду токопроводящего элемента навесные резисторы подразделяют на группы, которым, согласно ГОСТ 13453 – 68, присваиваются обозначения. Первый буквенный индекс указывает тип резисторов (С – постоянные, СП – переменные), а второй цифровой – материал, из которого они изготовлены (1 – непроволочные, поверхностные, углеродистые и бороуглеродистые; 2 – непроволочные, поверхностные, металлопленочные, металлоокисные; 3 – непрово- лочные, поверхностные, композиционные; 4 – непроволочные,
Рисунок 1.3.1. Постоянный непроволочный резистор цилиндрической формы:
1 – колпачок с выводом, 2 – токопроводящий слой, 3 – керамический стержень, 4 – гидрофобная эмаль.
объемные, композиционные; 5 – проволочные; 6 – резисторы СВЧ).
Третий цифровой индекс означает конструктивный вариант исполнения резисторов одной группы (например, С5-5 – постоянный проволочный резистор пятого варианта исполнения). Наряду с таким обозначением некоторые резисторы ранних выпусков имеют обозначения, в основу которых были положены некоторые отличительные признаки (например, МЛТ – металлопленочный, лакированный, теплостойкий).
По характеру изменения сопротивления резисторы подразделяют на постоянные и переменные, в том числе подстроечные. Постоянные резисторы не изменяют сопротивление при сборке, настройке и эксплуатации аппаратуры, а переменные и подстроечные имеют для этой цели специальное устройство (контактный ползун, укрепляемый на поворотной или червячной оси).
При изготовлении резисторов гибридных ИС из-за малых размеров полосок часто не удается получить требуемое расчетное сопротивление. Поэтому механическими способами или лазерным лучом, уменьшая ширину полоски, подгоняют сопротивление резисторов под заданный номинал.
Рассмотрим типичные конструкции постоянных и переменных резисторов различных групп.
По с т о я н н ы й н е п р о в о л о ч н ы й п о в е р х н о с т н ы й р е з и с т о р ц и л и н д р и ч е с к о й ф о р м ы, характерный для групп С1, С2 и СЗ (рис. 1.3.1), представляет собой круглый керамический стержень 3, на внешнюю поверхность которого нанесен тонкий (от долей до единиц микрометра) токопроводящий слой 2. На оба конца стержня насажены латунные колпачки 1 с аксиальными (чаще всего) выводами. Для защиты от внешней среды резистор покрывают гидрофобной (водоотталкивающей) эмалью 4, а выводы облуживают. Цвет эмали обычно обозначает ту или иную группу резисторов (например, красный – группу С2). Токопроводящий слой низкоомных резисторов (не более 200 – З00 Ом) сплошной, а резисторов с более высокими сопротивлениями – с нарезкой; причем чем выше сопротивление, тем мельче шаг нарезки.
П о с т о я н н ы й н е п р о в о л о ч н ы й о б ъ е м н ы й р е з и с т о р п р я м о у-
г о л ь н о й ф о р м ы, характерный для группы С4 (рис. 67), представляет собой стержень из токопроводящей композиции 4 с проволочными аксиальными выводами 1, которые опрессованы стеклоэмалевой
(стеклокерамической) оболочкой 2. Такая конструкция весьма устойчива к механическим воздействиям и влиянию влаги.
Рисунок 1.3.2. Постоянный непроволочный резистор прямоугольной формы:
1 – проволочный вывод, 2 – етеклоэмалевая оболочка, 3 – эмалевое покрытие,
4 – токопроводящая композиция
П о с т о я н н ы й п р о в о л о ч н ы й р е з.и с т о р, характерный для группы С5, представляет собой изоляционный каркас, на который намотана проволока (или микропроволока в стеклянной изоляции),. имеющая высокое удельное сопротивление. Каркас выполняют из керамики или нагревостойкой пластмассы, а обмотка из манганина, константана или нихрома может быть однослойной, многослойной, простой и специальной, секционированной и несекционированной. Снаружи резистор покрывают термостойкой эмалью, опрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами. Резистор может быть цилиндрической или прямоугольной формы.
П о с т о я н н ы й н и т о ч н ы й р е з и с т о р, характерный для групп микромодульных резисторов С2-12 и СЗ-З, представляет собой стержень из стекловолокна с нанесенными на его поверхность тонкими слоями сплавов олова или токопроводящей композиции и применяется при конструировании ГИС. Ниточные резисторы приклеивают к контактным площадкам подложек токопроводящим клеем-контактолом.
П о с т о я н н ы й т о н к о п л е н о ч н ы й р е з и с т о р ГИС представляет собой напыленный через специальную маску на ситалловую или поликоровую подложку тонкий (не более 1 мкм) слой проводникового материала в виде прямоугольной полоски или ―меандра‖ (рис. 1.3.3). Для защиты от окисления на эти резисторы часто напыляют слой моноокиси кремния или покрывают их гидрофобным лаком.
П о с т о я н н ы й т о л с т о п л е н о ч н ы й р е з и с т о р ГИС изготовляют нанесением через трафарет (маску) специальных паст на основе благородных металлов. Пасту втирают специальным инструментом (ракелем) в керамическую подложку (керамика 22"С), а затем вжигают, получая резисторы прямоугольной формы с шириной полоски на порядок большей, чем у тонкопленочных.