Для повышения качества и надежности микросварных соединений применяют различные методы активации: электрическим током и ИК-излучением. Импульс электрического тока пропускают через оба соединяемых элемента в направлении, обеспечивающем электроперенос диффузионно-подвижного металла в соединении (рис. 6.24, а). Поскольку в соединении Al—Ni алюминий обладает большим коэффициентом диффузии, чем никель, электрический ток через соединение стимулирует диффузионное взаимодействие в процессе микросварки, что приводит к образованию интерметаллидов Al3Ni, имеющих повышенную прочность, и вызывает увеличение надежности микросварного соединения.
1 генератор УЗ-колебаний; 2 преобразователь; 3 волновод; 4 инструмент; 5 проволока; 6 контактная площадка; 7 устройство токовой активации; 8 блок питания; 9 блок управления; 10 блок ИК-активации
Рис. 6.24. Схемы УЗ-микросварки с токовой активацией (а) и ИК-активацией
(б)
ИК-подогрев соединяемых элементов при УЗ-микросварке снижает до минимума эффект проскальзывания проволочного вывода, увеличивает его пластичность, степень деформации и фактическую площадь контакта вывода с контактной площадкой (рис. 6.24, б). Кроме того, тепловая активация соединения до температур, не превышающих температуру рекристаллизации металлов, участвующих в соединении, ускоряет диффузионные процессы в зоне контакта, что в итоге способствует увеличению прочности микросварных соединений и повышению надежности изделий.
Термозвуковая сварка (ТЗС) находит все возрастающее применение при сборке изделий микроэлектроники. В ТЗС соединения формируются в результате совместного действия температуры, энергии ультразвуковых колебаний сварочного инструмента и усилия нагружения инструмента. Данный способ сварки как бы объединяет отдельные качества термокомпрессионной и УЗ-сварки, обеспечивает высокое качество соединения при существенном смягчении режимов сварки, прежде всего температуры. ТЗС используется в первую очередь при автоматизированной сборке приборов, критичных к температурам свыше
200—250 С. Применим этот способ сварки и для сборки толстопленочных ГИС. Качественные, устойчивые к повышенным температурам (150 С) и термоциклированию (100 циклов; –55...+150 С) соединения золотой проволоки с медными печатными проводниками получаются ТЗС при температуре подложки 105—200 С. Практически ТЗС начинают широко применять и для сборки ИМС и БИС массовых серий с целью смягчения режимов и снижения критичности сварочного процесса к колебаниям качества соединяемых материалов.Из всех видов сварки, применяемых в производстве изделий микроэлектроники, ТЗС является наиболее сложной в реализации, но отличается большой гибкостью в выборе режимов, а поэтому весьма перспективна для автоматизированной сборки. Использование при ТЗС ультразвуковой энергии наряду со снижением температуры обусловило ряд преимуществ: увеличение скорости, относительная легкость установления приемлемых режимов, улучшение свариваемости более широкой номенклатуры материалов соединяемых поверхностей. Важным достоинством ТЗС по сравнению с УЗС является меньшая критичность к жесткости конструктивных элементов корпуса.
Термокомпрессионной сваркой (ТКС) называют микросварку давлением в твердой фазе элементов, нагреваемых от постороннего источника теплоты, с локальной пластической деформацией в зоне сварки. Различают термокомпрессионную микросварку с общим, импульсным, косвенным и комбинированным нагревом.
Основными параметрами режима термокомпрессии являются: усилие сжатия соединяемых элементов F, температура нагрева инструмента Т, длительность выдержки под давлением t.
Выбор усилия сжатия F определяется допустимой деформацией присоединяемого проводника, которая для золотой проволоки составляет 50—70 %, алюминиевой — 60—80 %. Температура нагрева не должна превышать температуру образования эвтектики соединяемых материалов и находится в пределах 250—450 С. Длительность выдержки выбирается в зависимости от сочетаний свариваемых материалов в диапазоне 1—10 для достижения максимальной прочности соединения. Для сварки применяют золотую проволоку диаметром 30 мкм, которую обезжиривают в спирте и отжигают в течение 5 мин при температуре 600 С. ТКС проводится внахлест (клином) (рис. 6.25, а) или встык, с образованием шарика (рис. 6.25, б). Шарик из золотой проволоки образуется в пламени водородной горелки или электрическим разрядом. Диаметр шарика составляет 1,5—2 диаметра проволоки. Правильная форма шарика и отсутствие оксидов на его поверхности улучшают качество соединений.1 – проволока; 2 – инструмент; 3 – подложка
Рис. 6.25. Схемы термокомпрессионной сварки:
Для ТКС рекомендуются рубиновые капилляры, имеющие более высокие износостойкость рабочих поверхностей, коррозионную стойкость и чистоту поверхности. Обозначение капилляра: КТ51-25-150-2-30 (КТ — капилляр для термокомпрессионной сварки, 25 — диаметр проволоки, 150 — диаметр D, 30 — размер R). Наибольшая прочность соединений достигается при использовании инструмента сложной формы: с ребром жесткости или типа "рыбий глаз" (рис.
6.26).
Рис. 6.26. Типы термокомпрессионных соединений
После сварки в процессе электротренировки возможно появление интерметаллидов AuxAly: пурпурного AuAl2, затем рыжего, а через некоторое время фазы черного цвета, имеющих низкую прочность и высокое электрическое сопротивление. Скорость процесса разрушения соединения возрастает при повышении температуры. Расчеты показывают, что при температуре 100 С падение прочности вдвое произойдет через 10 сут., а следующее падение прочности вдвое — через 7 лет.Повышения качества ТКС добиваются подачей в зону сварки осушенного защитного газа (аргона, азота, формиргаза) и снижением температуры. Для ТКС используется современное автоматическое оборудование (табл. 6.9).
Табл. 6.9- Характеристика установок термокомпрессионной сварки
Параметры | ЭМ-490 | ЭМ-4030 | ЭМ-4060 | Hitachi (Япония) |
Диаметр вывода, мкм | 20—60 | 20—60 | 20—60 | 20—60 |
Способ соединения | Встык, внахлестку | Внахлестку | Встык, внахлестку | Встык |
Температура нагрева, С | 250—400 | 250—450 | 250—450 | До 450 |
Контактное усилие, Н | 0,4—3 | 0,4—3 | 0,4—3 | 0,3—2,5 |
Время сварки, с | 0,05—0,3 | 0,4—3,6 | 0,04—0,3 | 0,05—4,0 |
Производительность , сварок/ч | 12 500 | 300 | 10 000 | 18 000 |
Сварка расщепленным (сдвоенным) электродом применяется в технологии электрического монтажа, в частности при получении контактных соединений планарных выводов ИМС и ЭРЭ с контактными площадками плат, плоских ленточных проводов с выводами печатных разъемов и др. Метод пригоден для сварки таких материалов, как медь, серебро, золото, алюминий, никель толщиной 0,03—0,5 мм. Подготовка свариваемых поверхностей заключается в предварительном отжиге материалов для снятия внутренних напряжений и увеличения пластичности, обезжиривании поверхностей химическими растворами. Сварка выполняется электродом, изготовленным из вольфрама или молибдена в виде двух токопроводящих частей, разделенных зазором h = 0,02— 0,25 мм, либо с помощью диэлектрической прокладки (рис. 6.27.).