Дозу извести определяем для полной нейтрализации гидролитической кислотности по формуле:
Д = Нг*500*Мп/1000 000 000, где
Д – доза СаСО3, т/га;
500 – количество СаСО3, необходимое для нейтрализации 1мг-экв Нг в 1 кг почвы;
Мп – масса пахотного слоя на 1 га, кг/га;
1000 000 000 – коэффициент для перевода мг СаСО3 в т.
Д = 5*500*2500 000/1000 000 000 = 6,25 т/га.
В качестве известкового удобрения используем известковую муку, состоящую на 100% из СаСО3. Содержание сурьмы составляет 0,10 мг/кг сухой массы.
Расчет изменения концентрации сурьмы в почве в результате единовременного внесения суммы удобрений и мелиорантов.
Определяем по формуле:
Сп = Со+ ∑ Муi ( Суi - Со)/Мп, где
Сп – концентрация химического элемента в почве после удобрения и мелиоранта, мг/кг;
Со – концентрация химического элемента в почве до внесения удобрений, мг/кг;
Муi – физическая масса удобрений, кг/га;
Суi – концентрация элемента в удобрении, мг/кг
Сп = 0,3 + 400 (20-3)/2500 000 + 6250 (0,1-0,3)/2500000 = 0,3 мг/100 г.
Таким образом, после применения простого суперфосфата и известняковой муки, содержащих в своем составе примесь сурьмы, на почве с концентрацией сурьмы 3мг/кг, концентрация сурьмы останется прежней.
2.2 Динамика концентрации экотоксиканта в почве в результате
длительного применения средств химизации
Концентрация примесного элемента в почве рассчитывается на момент насыщения почвы макроэлементом после длительного применения удобрений. В связи с этим предлагается расчет времени, за которое концентрация фосфора (как наименее мигрирующего макроэлемента) достигнет оптимального для растений уровня в почве. Для картофеля на легкосуглинистой почве он равен 18 мг/100г почвы Р2О5.
t = - 1/λ*ln(1- λ(Сп-Со)Мп/(Cу-Со)Му, где
t – время, за которое концентрация макроэлемента в почве достигнет заданной величины, года;
Со, Су – концентрация фосфора в почве до внесения удобрений и в удобрениях, мг/100г;
Сп – заданная оптимальная величина концентрации фосфора в почве, мг/100 г;
Мп, Му – масса почвы и физическая масса удобрений, кг/га;
λ – постоянная скорости выноса элемента из почвы, равная сумме λпв+ λфв+ λур, обозначающие постоянные скоростей выноса элемента поверхностными водами, фильтрующими водами и урожаем соответственно.
t = -1/0,14*ln(1-0,14*(18-10)*2500 000/(20000-10)*400=3 года
При помощи экспонициальной модели накопления элементов в почве можно оценить концентрацию примесного элемента в почве после длительной эксплуатации сельскохозяйственных угодий, результатом которой явилось достижение оптимальной концентрации фосфора в пахотном слое почвы.
Cn = Co+1/λ(1-e-λt) ∑((Суi-Co)Myi/Mo) , где
Cn – концентрация примесного элемента в почве после эксплуатации сельскохозяйственных угодий в течение времени (t), мг/кг;
Со – концентрация примесного элемента до внесения удобрений, мг/100 г;
Суi – концентрация примесного элемента в каждом вносимом материале, мг/100 г;
λ – постоянная скорости выноса элемента из почвы;
t – период времени, в течение которого концентрация фосфора в почве достигла оптимального для растений значения, года.
Сп = 0,3+1/0,1(1-е-0,1*3)*(2-0,3)400/2500 000 =0,3 мг/100 г.
Вывод – после длительного применения минеральных удобрений на сельскохозяйственных угодьях, при достижении оптимальной концентрации фосфора, концентрация сурьмы в почве не изменится.
2.3 Накопление примесного элемента в звеньях трофической цепи
почва-растение-человек. Индекс риска
Важным параметром миграции химического элемента в системе почва-растение является коэффициент накопления. Знание коэффициента накопления позволяет определить его вынос урожаем, концентрацию в продукции растениеводства, т.е. оценить качество урожая, прогнозировать поступление экотоксиканта в организм человека.
Ср = Сп*КН, где
Ср – концентрация элемента в растении, мг/100 г;
Сп – концентрация элемента в почве, мг/100 г;
КН – коэффициент накопления, для картофеля равен 0,02.
Ср = 0,3 * 0,02 = 0,006 мг/100 г.
Определим удельное поступление сурьмы в организм человека I (мг/кг*день), усредненное к 70-летнему периоду жизни.
I = Ср*bk*mk*fk*E*L/Mb*70*365, где
Ср – концентрация элемента в хозяйственной части растения;
bk – коэффициент, учитывающий изменение концентрации элемента в результате технологической или кулинарной обработки растительной продукции;
mk – масса продукта, потребляемого в течение дня;
fk – безразмерная характеристика, определяющая усвоение продукта организмом человека;
E – частота потребления продукта, дней/год;
L – продолжительность потребления, лет;
Mb – усредненная масса тела (70 кг);
70*365 – средняя продолжительность жизни, дней.
I = 0,006*0,5*0,2*0,9*365*70/70*70*365 = 0,0000077 мг/кг сутки.
Индекс риска (hazard index – HI) находим согласно следующему выражению: HI = I/RfD,
Где RfD – доза, определяющая «пороговый эффект» воздействия загрязнителя на организм человека, т.е. тот безопасный уровень его воздействия, к которому, как предполагается, организм оказывается нечувствительным. Для сурьмы эта доза равна 0,0004 мг/кг сутки.
HI = 0,0000077/0,0004 = 0,019
Индекс риска намного меньше единицы. При таком поступлении сурьмы с пищей, человек вреда не получит.
Выводы
При возделывании картофеля на почвах, с приведенной агрохимической характеристикой, при использовании приведенного количества удобрения, в течение года количество сурьмы в почве не изменится, продукция растениеводства безопасна для человека.
Кроме того, снизить воздействие тяжелых металлов на здоровье населения можно путем решения следующих задач:
1. организация точного и оперативного контроля выбросов тяжелых металлов в атмосферу и воду;
2. прослеживание цепей миграции тяжелых металлов от источников до человека;
3. налаживание широкого и действенного контроля (на различных уровнях, вплоть до бытового) содержания тяжелых металлов в продуктах питания, воде и напитках.
4. проведение выборочных, а затем и массовых обследований населения на содержание ТМ в организме.
Для получения продукции растениеводства, свободной от тяжелых металлов, на почвах с повышенным их содержанием необходимо:
* провести агрохимическое обследование пашни, определить содержание тяжелых металлов в почве;
* произвестковать кислые почвы;
* исключить применение минеральных удобрений, содержащих тяжелые металлы;
* подобрать культуры, минимально потребляющие эти элементы; на сильно загрязненных полях можно выращивать культуры для технической переработки;
* периодически проводить контроль продукции на содержание тяжелых металлов.
Список использованной литературы
1. Кабата-Пендиас А., Пендиас Г. Микроэлементы в почвах и растениях. Пер. с англ. М.: Мир, 1989. 439 с.
2. Кауричев И.С., Панов Н.П., Розов Н.Н. и др. Почвоведение. М.: Агропромиздат, 1989. 719 с.
3. Растениеводство/Г.С. Посыпанов, В.Е. Долгодворов, Б.Х. Жеруков и др.; Под ред. Г.С. Посыпанова.М.:КолосС, 2006г. 612с.
4. Тяжелые металлы в системе почва-растение-удобрение. М.: Колос, 1997, 412 с.