Рассуждая подобным образом, увидим, что скорость уменьшается по степенному закону:
v/33, v/3…v/з.
Показатель степени п равен десятой части разности температур реакции. Например, если скорость реакции при 40ْС равна v, то при температуре —20° С она составит уже v/729.
Интересно, однако, заметить, что биохимические реакции проходят на основании этого закона даже при очень низких температурах, только их скорость становится исключительно малой.
Степень снижения скорости биохимических реакций при уменьшении температуры на 10°С, следуя ван Гоффу, принято обозначать
Qio. Степенью Qio принято, однако, описывать снижение скорости не только какой-нибудь одной определенной реакции. Эту величину используют также для характеристики снижения скорости всей совокупности биохимических реакций в целом. Например, поскольку сохраняемость зависит главным образом от действия совокупности биохимических реакций, то срок хранения также может характеризоваться величиной Qio.
Куприянов установил для различных видов пищи увеличение времени ее сохраняемости при изменении температуры на 10° С.
Qio =
где Qio—температурный коэффициент сохраняемости; длительность хранения при t=10°C; —продолжительность хранения при t С.
Как установил Куприянов, при низкотемпературной хранении быстрозамороженных овощей величина Qio равна 2, нежнрной рыбы—3,1, а птицы—4.
Интересная картина получается, если срок хранения какого-нибудь продукта, определенный различными авторами (например, продолжительность хранения говядины или свинины), отложить на графике зависимости от температуры в температурной области ниже и выше точки замерзания (рис. ).
Проделав соответствующие расчеты для значения Qio в области температур выше и ниже точки замерзания, мы получим следующие величины:
Qio=3,85 Qio=5,5 Qio=4,16 Qio=4,85 |
Говядина выше точки замерзания » ниже » »
Свинина выше точки замерзания » ниже » »
Видно, что при температурах ниже точки замерзания продолжительность хранения увеличивается быстрее при уменьшении температуры, чем в температурной области выше точки замерзания. Таким образом, после перехода через точку замерзания не только уменьшается скорость биохимических реакций, но вступает в силу и новый фактор, влияющий на удлинение срока сохраняемости продуктов. Таким фактором является вымерзание находящейся в продуктах воды (табл. ).
Снижение температуры оказывает многостороннее и комплексное воздействие на биологические процессы. Ниже мы будем рассматривать этот вопрос более подробно. Сейчас только заметим, что применение низких температур приводит к приостановлению и замедлению биологических процессов. С другой стороны, при низких температурах эти процессы могут прекратиться вообще, что вызывает иногда вредные, а иногда полезные изменения.
Во время быстрого замораживания таких влагосодержащих веществ, как пищевые продукты, значительная часть воды становится льдом. Поэтому применение низких температур в подобных процессах консервирования обязательно сопровождается явлением замерзания. Следует, однако, упомянуть, что все-таки есть и такие процессы, где применение низких температур не сопровождается вымерзанием влаги из обрабатываемого продукта. Явление вымерзания удается исключить, когда точка замораживания продуктов сильно понижается с помощью введения в них каких-нибудь веществ, например, сахара или соли. Тогда температура хранения может быть ниже температуры замерзания. Другой пример тому—наличие связанной воды в материале, подвергаемом процессу быстрого замораживания. Связанная вода не вымерзает даже при очень низких температурах, например даже при вымерзании бактериальных спор. Так как процесс замерзания обычно играет важную роль при быстром замораживании продуктов в изменении их качества, мы познакомимся с ним более подробно.
9) ЗАМОРАЖИВАНИЕ КЛЕТОК
Как животные, так и растительные клетки можно заморозить и в живом, и в мертвом состоянии. Замораживаются отдельные клетки в суспензии и клетки, образующие структуру тканей. Однако для всех этих случаев можно установить и одинаково справедливые общие закономерности.
Как известно, химический состав клеток сложен. С точки зрения замораживания главную роль играет поведение клеточных белковых соединений. Благодаря своим физическим свойствам белки относятся к коллоидам. Растворяясь в воде, они образуют гидрогели и гидрозоли. Та часть воды, активность которой в гидрозолях и гидрогелях ниже нормальной, называется связанной водой, а остальное водосодержание—свободной водой. Под действием таких внешних воздействий, как изменение температуры, золи переходят в гели и наоборот.
Изменения в клетках при их охлаждении начинают происходить уже вблизи точки замерзания. Вязкость клеточной протоплазмы возрастает, образуется гель, а содержащиеся в клетках липиды вымерзают. Существенные изменения, однако, начинаются после замерзания некоторого количества воды клеточной влаги. Замерзание клеточного коллоида обычно начинается так же, как и замерзание истинного раствора. Здесь тоже возникает явление понижения температуры замерзания, а из коллоидного раствора вымерзает только чистая вода. Вследствие вымерзания воды остаточная концентрация раствора возрастает, и температура его замерзания подобно истинному раствору уменьшается. Чем ниже температура клеток, тем больше из них вымерзает воды, но благодаря коллоидному характеру системы связанная вода обычно не замерзает. Так, по данным Морана, в 2%-ном растворе желатина примерно 35% воды не вымораживается даже при температуре жидкого воздуха (—196° С).
На рис. температура t соответствует точке замерзания. Ее значение зависит от концентрации растворенных в клеточной влаге веществ. При понижении температуры и дальнейшем отборе тепла некоторая часть воды клеточной влаги вымерзает, но жизнеспособность организма пока не изменяется и не исчезает. Это явление справедливо даже для самых общих случаев. Такое состояние продолжается до температуры t.
Говоря о вымерзании воды на участке t1—t2, мы имели в виду биохимически (и даже биологически) свободную воду. На этом участке скорость замерзания не играет особой роли. Случается даже так, что при медленном замерзании биологическая обратимость оказывается лучшей и большее количество клеток остается в живом состоянии. После оттаивания клеточный обмен веществ снова возобновляется. Тут, однако, становится важным фактор времени, в течение которого клетки находились при температуре t1 до tг, и то, каким образом происходило оттаивание. Значение температуры t2, или границы биологической обратимости, неоди- наково для разных клеток и клеточных структур. Биологическая обратимость при замораживании или полное восстановление жизненных функций после замораживания характерно только для некоторых пород рыб (карасей), некоторых растений и обычно структур более низкого порядка и организации.
При охлаждении ниже температуры t2 процесс вымерзания воды продолжается и, хотя клетки и клеточные структуры отмира-
ют, вола вымерзает из коллоидного раствора обратимым образом Вымерзшее количество воды до температуры t3 полностью представлено коллоидно свободной водой. У фруктов температуры t2 и t3 находятся обычно очень близко друг от друга, т. е. прекращений жизнедеятельности практически сопровождается наступлением коллоидной необратимости процесса. Ниже температуры tз начинает замерзать связанная коллоидная вода. Коллоидные частички которые до этого были надежно отделены друг от друга оболочкой гидратов, теперь могут сближаться настолько, что различны силы притяжения склеивают мицеллы. Высвобожденные связи, на которых раньше находились молекулы воды, теперь действуют друг на друга так, что при взаимодействии некоторых главных соединений коллоидных частичек могут произойти химические изменения и коллоид может денатурироваться. Если позже к местам этих связей подойдут молекулы воды, то они не смогут взаимодействовать с ними. Исследования Риделя показали, что даже если температура клеток понизится ниже температуры t3, то и тогда вся вода не вымерзнет из растворов, т. е. содержащуюся в клетках воду невозможно выморозить полностью.
Линг (1968) объясняет состояние связанной воды наличием на| молекулярной поверхности вещества, образующего коллоидный раствор, многослойного поляризованного покрытия из водяных молекул (рис. ). Свойства поляризованных водных молекул (их точка замерзания, способность растворять различные вещества и т.д.) отличаются от свойств нормальных неполяризованных молекул. Можно предположить, что полное влагосодержание живых клеток состоит именно из таких поляризованных молекул.
Уменьшение обратимости коллоидов по мере вымерзания воды ведет к уплотнению остаточного раствора. Водные растворы, образующие клеточную влагу, в зависимости от вида продуктов со-
Рис. 91. Расположение слоев поляризованных молекул воды между молекулами белка. Черточки внутри кружков, обозначающих молекулы воды, показывают направления дипольных моментов.