Смекни!
smekni.com

Методы определения рН мяса (стр. 2 из 6)

Рисунок 1 Белки мышечного волокна

Миоглобин относится к альбуминам, составляет до 1%. от общего количества белков, содержит пигментную группу «гем», которая обуславливает красный цвет мышечной ткани. Со способностью этого белка присоединять молекулы различных газов связана его физиологическая функция как носителя кислорода.

Белки клеточных ядер — нуклеопротеиды содержат фосфор, представляют класс альбуминов, и на их долю от общего количества белков мяса приходятся десятые доли процента. Белки сарколеммы составляют около 10% от всех белков мышечной ткани и представлены главным образом коллагеном и эластином. Коллаген и эластин относятся к неполноценным белкам, так как в их составе отсутствуют триптофан и другие незаменимые аминокислоты.

Состав основных аминокислот белка мяса говядины, свинины и баранины приведен в таблице 2.

Таблица 2 Аминокислотный состав мяса

Наименование аминокислоты, % к общему белку
Мясо аргинин Валин Гис тидин изолейцин лейцин лизин метионин треонин фенил- аланин трип- тофан
Говядина Свинина Баранина 6,6 6,4 6,9 5,7 5,0 5,0 2,9 3,2 2,7 5,1 4,9 4,8 8,4 7,5 7,4 9,4 7,8 7,6 2,3 2,5 2,3 4,0 5,1 4,9 4,0 4,1 3,9 1,1 1,4 1,3
Заменимые аминокислоты, % к общему белку
Мясо аланин аспарагиновая кислота глицин глютаминовая кислота пролин серин цистин
Говядина Свинина Баранина 6,4 6,3 6,3 8,8 8,9 8,5 7,1 6,1 6,7 14,4 14,5 14,4 5,4 4,6 4,8 3,8 4,0 3,9 1,4 1,3 1,3

Как видно из таблицы, количественное содержание аминокислот белков мяса основных видов убойных животных указывает на его большую биологическую ценность.

Количественное содержание липидов (триглицеридов жирных кислот) в мышечной ткани варьирует значительно и зависит от упитанности животного. Их качественный состав также различен у животных разных видов. В основном в состав молекулы внутри мышечных липидов животных входят высокомолекулярные жирные кислоты. Уровень фосфолипидов довольно постоянен и колеблется в пределах 0,5—0,8%, в зависимости от вида и категории мяса. Фосфолипиды представлены лецитинами, кефалинами и другими соединениями. Содержание общего холестерина составляет 50—70 мг%, а этерифицированного холестерина — 3—5 мг%.

В состав азотистых экстрактивных веществ входят: карнозин, ансерин, карнитин, креатинфосфат, креатин, креатинин, аденозин моно-, ди - и -трифосфат (АМФ, АДФ, АТФ), пуриновые основания, свободные аминокислоты, мочевина и др. Одним из главных азотистых экстрактивных веществ является карнозин. Он способствует усилению выработки и отделению желудочного сока. Многие из азотистых экстрактивных веществ при введении их в организм животного повышают тонус нервной системы.

В состав безазотистых экстрактивных веществ входят: гликоген, глюкоза, гексозофосфаты, молочная кислота, пировиноградная кислота и др. Из общего количества безазотистых экстрактивных веществ на долю гликогена (животного крахмала) приходится более половины. Пищевое значение азотистых и безазотистых экстрактивных веществ невелико, но они способствуют пищеварительным процессам, усвоению пищи человеком и придают ей особый вкус и аромат.

Минеральные вещества в мышечной ткани представлены солями многих металлов. В тощем мясе содержится 0,20—0,22% фосфора, 0,32—0,35% калия, 0,05—0,08% натрия, 0,020—0,022% магния, 0,010—0,012% кальция, 0,002—0,003% железа, 0,003— 0,005% цинка и много других микроэлементов (медь, стронций, барий, бор, кремний, олово, свинец, молибден, фтор, йод, марганец, кобальт, никель и др.). Всего может входить до 34 элементов. Микроэлементы в питании человека имеют большое физиологическое значение, они входят в состав гормонов, ферментов и дыхательных пигментов.

Вместе с этим мышечная ткань убойных животных содержит следующее количество витаминов (в мг%): В1 — 0,1— 0,3 (у свиней 0,6—1,4); В2 (рибофлавин)—0,1—0,3; В6— 0,3—0,7; РР - 4,8; В12 — 0,002—0,008; пантотеновая кислота — 0,6—1,5; биотин—1,5— 3,0; А — 0,02. Тепловая обработка мяса частично разрушает витамины. Содержание их в мясе снижается: при жарении на 10— 50%, стерилизации консервов на 10—55 и при варке на 45—60 %.

Ферменты. В мясе содержатся различные ферменты. Одни из них служат одновременно и пластическим материалом для построения ткани, например миозин и миоген; другие ферменты, находящиеся в мышечной ткани, участвуют в образовании промежуточных соединений или ускоряют гидролитические превращения. Например, липаза катализирует гидролиз и синтез жиров — сложных эфиров глицерина и жирных кислот; амилаза, глюкозидаза, мальтаза расщепляют углеводы; пепсин, аминопептидаза осуществляют протеолиз белков. Важную роль в процессе созревания мяса играют фосфорилазы (аминофосфорилаза и др.), фосфоферазы, альдолазы, карбоксилазы и другие ферменты, катализирующие промежуточные биохимические реакции азотистых и безазотистых экстрактивных веществ. Окислительно-восстановительные ферменты, в частности пероксидаза и каталаза, имеют практическое значение при определении свежести мяса и распознавании мяса павшего животного. Это самые распространенные ферменты. Содержаться они во всех клетках и тканях организма человека и животных.

1.3 Химический состав и пищевая ценность мяса домашней птицы

Мышечная ткань птицы по сравнению с мышцами крупных животных имеет меньше соединительной ткани. Последняя в мясе птицы относительно нежная, рыхлая и равномерно распределяется в мышцах тушки. Жир откладывается под кожей, обычно на спине, груди и животе, а также внутри тушки — на кишечнике и желудке. Он имеет более низкую точку плавления, чем жир других домашних животных, поэтому жир птицы, как и мышечная ткань, легче усваивается. В мясе птиц содержится 0,9—1,2% экстрактивных веществ, что придает ему особые вкусовые свойства и вызывает усиленное выделение пищеварительных соков, а, следовательно, способствует лучшему усвоению пищи. Особенно высокими диетическими свойствами обладает мясо кур и индеек. Мясо уток и гусей не относится к категории диетических продуктов, но характеризуется высокой калорийностью (табл. 3).

Таблица 3 Химический состав и калорийность мяса птицы

Вид птицы Сухое вещество, % Белок, г Жир, г Калорий на 100 г мяса
Гуси Утки Индейки Куры Цыплята 46,6 38,8 34,2 26,1 25,0 15,68 17,58 23,28 19,00 20,43 26,10 17,10 7,65 4,50 2,25 307,0 231,0 166,6 119,8 104,7

В мясе кур и индеек различают мышцы белые и красные. Белые мышцы расположены в области груди. В белых мышцах меньше саркоплазмы и жира, больше воды и белка; в красных мышцах вдвое больше тиамина, рибофлавина и пантотеновой кислоты. В «белом мясе» много аминокислот, особенно аргинина и лизина. Кроме того, в мясе птицы содержатся гистидин, тирозин, триптофан, цистин, глютаминовая кислота, а также витамины В1 В2, РР и др. Мясо самцов, достигших половой зрелости, более жесткое и менее вкусное, чем мясо самок.


2. ПОСЛЕУБОЙНЫЕ ИЗМЕНЕНИЯ МЯСА

2.1 Органолептические и биохимические изменения мяса после убоя

Мясо только что убитого животного (горяче-парное мясо) мягкой консистенции, без выраженного приятного ароматического запаха, при варке дает мутноватый неароматный бульон и не обладает высокими вкусовыми качествами. Более того, в первые часы после убоя животного мясо приобретает ярко выраженную жесткость, при которой сохраняются его низкие вкусовые качества, плохая усвояемость и даже непригодность к кулинарной обработке. Спустя 24-72 ч после убоя животного (в зависимости от температуры среды, аэрации и других факторов) в мясе исчезает его жесткость, оно приобретает сочность и специфический приятный запах, на поверхности туши образуется плотная пленка (корочка подсыхания), из него можно отделить мясной сок, при варке дает прозрачный ароматный бульон, становится нежным и т. д. Происходящие в мясе процессы и изменения, в результате которых оно приобретает желательные качественные показатели, принято называть созреванием мяса.

Созревание мяса представляет собой совокупность сложных биохимических процессов в мышечной ткани и изменений физико-коллоидной структуры белка, протекающих под действием его собственных ферментов.

В Советском Союзе начало систематическому и подробному изучению биохимических процессов, происходящих при созревании мяса, положили исследования И. А. Смородинцева и его сотрудников.

Процессы, происходящие в мышечной ткани после убоя животного, можно условно подразделить на три следующие фазы: послеубойное окоченение, созревание и аутолиз.

Послеубойное окоченение в туше развивается в первые часы после убоя животного. При этом мышцы становятся упругими и слегка укорачиваются. Это значительно увеличивает их жесткость и сопротивление на разрезе. Способность такого мяса к набуханию очень низкая. При температуре 15—20 °С полное окоченение наступает через 3—5 ч после убоя животного, а при температуре от 0 до 2 °С — через 18—20 ч.

Процесс посмертного окоченения сопровождается некоторым повышением температуры в туше в результате выделения тепла, которое образуется от протекающих в тканях химических реакций. Окоченение мышечной ткани, наблюдающееся в первые часы и сутки после убоя животных, обусловлено образованием нерастворимого актомиозинового комплекса вследствие распада аденозин-трифосфорной кислоты (АТФ) до аденозиндифосфорной и аденозинмонофосфорной и фосфорной кислот (В. А. Энгельгардт).