Смекни!
smekni.com

Премиксы и их использование в кормлении сельскохозяйственных животных и птицы (стр. 2 из 7)

Эти нормы потребности определяют экспериментально для каждого вида и группы животных. Согласно опытным данным оптимальная потребность животных во много раз превышает минимальную потребность в витаминах. Потребность животных в витаминах зависит от многих постоянно меняющихся факторов. При этом принимаются в расчет колебания в содержании природных витаминов в кормах, условия содержания, наличие инфекционных или других возбудителей болезней, продуктивность и прочее. Так как уточнить соответствующую потребность в витаминах в каждом отдельном случае не представляется возможным, на практике часто применяют принцип «гарантийной добавки.

В конце 60-х годов была освоена химическая технология производства синтетических витаминов. Разработка технологии синтеза псевдо- и бета-ионов позволила отказаться от использования дорогого и дефицитного растительного сырья в синтезе ретинолов, токоферола, нафтохинонов. Было организовано крупнотоннажное производство этих витаминов на базе химического и нефтехимического сырья.

Технология промышленного производства премиксов строится на основе применения высокомеханизированного и автоматизированного оборудования, включающего бункера, автоматические дозаторы, смесители и другие машины и механизмы, через которые должны свободно пересыпаться все витамины и другие компоненты. Высокое содержание влаги нарушает сыпучесть премиксов, приводит к появлению в них плесени, изменению рН и самовозгоранию. Поэтому наиболее широкое применение для производства премиксов находят сухие сыпучие формы витаминов.

При создании гомогенных премиксов и кормов важное значение имеют размеры частиц сырья и витаминных форм, а также их биологическая активность.

Использование малых количеств витаминных и других добавок требует минимальных размеров их частиц, однако увлекаться значительным уменьшением размеров частиц не следует, так как это приводит к снижению стабильности препарата, в частности ретинолов и кальциферолов, а также к ухудшению сыпучести формы. Так, микрогранулы ретинолов и кальциферолов имеют лучшую стабильность при размере частиц свыше 150 мкм. Поэтому правильнее стремиться не к минимальному, а к оптимальному размеру частиц витаминов, исходя из всех влияющих на это факторов.

Для производства полноценных сбалансированных кормов применяют следующие витамины: ретинола ацетат и ретинола пальмитат (витамин А), эргокалъциферол (витамин D2), холекальциферол (витамин D3), токоферол (витамин Е), менадион (витамин К3), тиамин (витамин В1), рибофлавин (витамин В2), пантотеновую кислоту (витамин В3), холин (витамин В4), никотиновую кислоту (витамин РР), пиридоксин (витамин В6), фолиевую кислоту (витамин Вс или В9), цианокобаламин (витамин B12), аскорбиновую кислоту (витамин С) и биотип (витамин Н).

2.2 Ферменты (энзимы)

Ферменты представляют собой белковые вещества, вырабатываемые растениями, животными и микроорганизмами, способные ускорять химические реакции, не входя в состав конечных продуктов. В организме животных они выполняют роль биологических катализаторов, вступая на какое-то время в контакт с субстратом, образуя неустойчивое соединение фермент-субстрат. Неустойчивый комплекс разлагается на свободный фермент и продукты реакции.

Глубокие исследования в области энзимологии позволили выделить ферменты в чистом виде и применить в народном хозяйстве.

В хлебопекарной, крахмальной и текстильной промышленности используются ферменты амилолитического комплекса. Протеолитические ферментные препараты применяются в мясной и рыбной промышленности, при изготовлении сыров и в кожевенном производстве. Энзимы применяются в медицине и сельском хозяйстве для обогащения комбикормов и рационов сельскохозяйственных животных.

Растительные корма содержат много клетчатки или целлюлозы, которая не усваивается организмом, хотя по химической природе они представляют большую питательную ценность. Под действием ферментов растительные полимеры расщепляются до более простых углеводных соединений, доступных для усвоения организмом. Например, обработка кукурузных кочерыжек и свекловичного жома ферментными препаратами, обладающими высокой активностью гемицеллюлазы, в течение нескольких часов превращает до 30% сухого вещества этих кормов в восстанавливающие сахара.

Применение амилолитических целлюлозе- и гемицеллюлазолитических ферментов при силосовании клевера, картофеля и приготовлении комбинированных силосов из люцерны, кукурузы и картофеля приводит к сокращению сроков созревания силоса, повышению его качества, способствует большему накоплению молочной и уксусной кислот, сахара.

Успешное развитие ферментной промышленности последних лет обусловлено достижениями в области биохимии, микробиологии и налаживанием технологического процесса культивирования плесневых грибов и бактерий, извлечения продуктов их жизнедеятельности. В качестве исходных продуктов протеолитических, амилолитических и пектолитических ферментов промышленными предприятиями нишей страны используются культуры плесневых грибов Asp. oryzae, Asp. awamory, Asp. niger, Asp. flavus, Asp. usami и других, а также ряд бактериальных культур Вас. mesentericus, Вас. diostations, Вас. subtilis, clostridiumpaster и др.

Ферменты характеризуются высокой специфичностью действия, т. е. они обладают способностью катализировать строго определенный процесс превращения субстрата. Благодаря этому возможны строгая упорядоченность и теснейшая взаимосвязь отдельных ферментных реакций, которые обеспечивают обмен веществ. Однако, несмотря на индивидуальные различия между ферментами, характерными особенностями для них являются чувствительность к реакции среды, термолабильность и исключительно высокая эффективность действия.

Ферменты обладают электрическим зарядом, поэтому активность их обусловлена определенным оптимумом рН. Всякие отклонения рН от оптимума замедляют работу фермента или вообще приостанавливают каталитическое действие.

Ферменты имеют различный оптимум рН. Так, пепсин, содержащийся в желудочном соке, активен при рН 1,5...2,5, а амилаза — при рН 8…9. Активность ферментов может восстанавливаться при создании оптимума рН.

Ферментативная активность возрастает с повышением температуры субстратов до 50°С, но дальнейшее повышение температуры снижает активность ферментов и в итоге приводит к денатурации белка и необратимой потере активности. Ферменты в сухом виде сохраняют активность при температуре 100 °С, а при кратковременном ее повышении — до 170°С.

Смесь солей микроэлементов (СоС12, CuSO4, MnSO4, ZnSO4, KI) повышает амилолитическую и протеолитическую активность ферментных препаратов.

Знание биологических свойств ферментов позволило использовать последние как экзогенные катализаторы в пищеварении сельскохозяйственных животных, так как в их пищеварительном тракте поддерживаются условия среды, близкие к оптимальным для многих ферментов.

Так, в рубце жвачных температура находится в пределах 38...42°С, концентрация водородных ионов (рН) поддерживается в пределах 6,5...7, что обеспечивает благоприятные условия для каталитического действия экзогенных ферментов, а наличие в кормах солей микроэлементов положительно влияет на проявление их активности.

Дляобогащения комбикормов и рационов сельскохозяйственных животных используются ферментные препараты грибкового и бактериального происхождения.

К ферментным препаратам грибкового происхождения относят: глюкаваморин, амилоризин, пектаваморнн, пектофоетидин и другие; бактериального — амилосубтилин, протосубтилин, лизосубтилин и другие. Эти препараты выпускаются как в очищенном виде, так и неочищенные (технические).

2.3 Микроэлементы

В тканях высших животных и птицы обнаружено около 70 химических элементов, многие из которых присутствуют в весьма малых количествах. Если элемент обычно содержится в тканях или требуется животным и птице в количествах меньших, чем железо, его условно относят к микроэлементам. Физиологические функции и роль большей части известных микроэлементов, находящихся в организме, пока достоверно не установлены. Однако известно, что те микроэлементы, которые хорошо изучены, являются сильными биологически активными веществами.

В организм животных и птицы микроэлементы попадают с вдыхаемым воздухом, с водой и в основном с кормом. С точки зрения организации полнорационного кормления особый интерес представляют две группы микроэлементов: незаменимые и токсичные.

Незаменимые микроэлементы.

Эта группа микроэлементов удовлетворяет следующим критериям: при скармливании животным одного элемента или веществ, содержащих данный элемент, наблюдается значительное увеличение роста и продуктивности животных; при отсутствии элемента или веществ, содержащих этот элемент в полноценных рационах кормления, появляются признаки недостаточности; имеется взаимосвязь между состоянием недостаточности и низким содержанием в крови или тканях элемента, введение которого вызывает увеличение скорости роста и продуктивности животных.

В настоящее время к незаменимым для организма животных можно отнести 14 микроэлементов: железо, йод, медь, цинк, марганец, кобальт, молибден, селен, хром, никель, олово, кремний, фтор и ванадий

Токсичные микроэлементы.

Присутствуя в корме в очень малых количествах, токсичные микроэлементы вызывают отравление или симптомы заболевания у животных. Такие отравления наблюдаются, в частности, при попадании в пищу микроэлементов мышьяка, ртути, свинца.

Мышьяк (AS) постоянно содержится в организме животных и птицы, однако его биологическая роль выяснена недостаточно. Особенно сильным ядом является белый мышьяк, или мышьяковистый ангидрид (AS2O3).