Смекни!
smekni.com

Понятие пищевых добавок (стр. 6 из 12)

Действие эмульгаторов на этом не заканчивается. Благодаря обра­зованию пространственных и электрических барьеров они дополни­тельно стабилизируют эмульсии, то есть предотвращают повторное слипание уже сформировавшихся частичек дисперсной фазы и по­вторное расслоение. Пенообразователи и стабилизаторы пены пре­имущественно располагаются на поверхности пузырьков воздуха, об­разуя там прочную плёнку, которая усиливает сопротивляемость пу­зырьков слипанию. В жиросодержащих пенных массах, например в мороженом, эмульгаторы располагаются на поверхности жировых шариков. Они обеспечивают лучшее распределение жира и одновремен­но снижают антагонизм жиров и белков благодаря «гидрофилизации» поверхности жира. Кроме того, они способствуют необходимой час­тичной аггломерации жировых шариков (деэмульгированию).

Основные физико-химические и технологические свойства ПАВ определяются т. н. гидрофильно-липофильным балансом (ГЛБ) их мо­лекул. ГЛБ отражает соотношение молекулярных масс гидрофильных и липофильных групп. Величина ГЛБ может иметь значение от 1 до 20 (эмпирическая шкала Гриффита). Эмульгаторы, имеющие ГЛБ < 10, преимущественно липофильны, а имеющие ГЛБ > 10 — преимущест­венно гидрофильны. Чем больше ГЛБ, тем ярче проявляется способ­ность молекулы ПАВ к образованию и стабилизации прямых эмульсий (М/В), чем меньше ГЛБ — тем ярче проявляется способность к образо­ванию и стабилизации обратных эмульсий (В/М). Эмульгаторы, ха­рактеризующиеся величиной ГЛБ от 7 до 9, могут применяться в каче­стве смачивателей (смачивающих агентов), а характеризующиеся вели­чиной ГЛБ от 15 до 18 — в качестве солюбилизаторов. Гидрофильно-липофильный баланс — величина аддитивная, то есть ГЛБ смеси эмульгаторов можно вычислить, сложив ГЛБ компонентов пропор­ционально их содержанию в смеси.

Эмульгатор (или смесь эмульгаторов) ускоряет образование и ста­билизирует тот тип эмульсии, в дисперсионной среде которой он луч­ше растворим. Например, маргарин представляет собой эмульсию ти­па «вода в масле», поэтому для его получения применяют эмульгаторы с величиной ГЛБ 3...6. Майонез представляет собой эмульсию «масло в воде», и для него используют эмульгаторы, имеющие ГЛБ 8... 18.

В качестве первых пищевых эмульгаторов использовались натураль­ные вещества. Типичными и старейшими эмульгаторами являются белок куриного яйца, природный лецитин, сапонины (например, отвар мыль­ного корня). Некоторые из них сохранили свою популярность и сегодня. Однако более широко в промышленности используются синтетические эмульгаторы, или продукты химической модификации природных ве­ществ, промышленное производство которых начало развиваться в 20-е годы XX в. Целью химической модификации натуральных эмульгаторов является изменение их гидрофильно-липофильного баланса, например, ГЛБ лецитинов можно менять от 2 до 10. Соответственно меняется и их поведение в пищевых системах. Поскольку ГЛБ является величиной ад­дитивной, смешиванием нескольких эмульгаторов можно получать эмульгирующие системы, поведение которых сильно отличается от по­ведения компонентов.

Наиболее популярными пищевыми эмульгаторами являются моно- и диглицериды жирных кислот (Е471), эфиры глицерина, жирных и др. кислот (Е472), лецитины, фосфатиды (Е322), аммоний­ные соли фосфатидиловой кислоты (Е442), полисорбаты, эфиры сорбитана, эфиры полиглицерина и взаимоэтерифицированных рициноловых кислот (Е476), стеароиллактаты натрия ( Г 481), стеароиллактаты кальция (Е482). Величины их ГЛБ представ­лены в табл. 3.1.

3.2. Загустители и гелеобразователи

Загустители — вещества, увеличивающие вязкость пищевых продук­тов, то есть загущающие их. Гелеобразователями (желеобразователями) называются вещества, способные в определённых условиях обра­зовывать желе (гели) — структурированные дисперсные системы. За­густители и гелеобразователи позволяют получать пищевые продукты с нужной консистенцией, улучшают и сохраняют структуру продуктов, оказывая при этом положительное влияние на вкусовое восприятие. Благодаря способности связывать воду загустители и гелеобразователи стабилизируют дисперсные системы: суспензии, эмульсии, пены. Они почти всегда одновременно выполняют другие технологические функ­ции: стабилизаторов и влагоудерживающих агентов. Кроме того, они относятся к пищевым волокнам.

Чёткое разграничение между гелеобразователями и загустителя­ми не всегда возможно. Есть вещества, обладающие в разной степени свойствами и гелеобразователя, и загустителя. Некоторые загустите­ли в определённых условиях могут образовывать прочные эластич­ные гели.


3.2.1. Общие сведения

Загустители и гелеобразователи по химической природе представляют собой линейные или разветвлённые полимерные цепи с гидрофильны­ми группами, которые вступают в физическое взаимодействие с имею­щейся в продукте водой. За исключением микробных полисахаридов — ксантана Е415 и геллановой камеди Е418, а также желатина (живот­ный белок) — гелеобразователи и загустители являются углеводами (полисахаридами) растительного происхождения, растительными гид­роколлоидами. Их получают из наземных растений или водорослей. Из бурых водорослей получают альгиновую кислоту Е400 и её соли Е 401...404. Наиболее популярные гелеобразователи — агар (агар-агар) Е406 и каррагинан (в том числе фурцеллеран) Е407 — получают из красных морских водорослей, а пектин Е440 — чаще всего из яблок и цитрусовых. Полисахариды, полученные из растений, подразделяют на защитные коллоиды, выделяемые растением при повреждениях (экссудаты, смолы), и муку семян (резервные полисахариды расте­ний). К смолам относятся арабиногалактан Е 409, трагакант Е 413, гум­миарабик Е414, камедь карайи Е416, камедь гхатти Е419; к резервным полисахаридам — мука семян рожкового дерева Е410, овсяная камедь Е 411, гуаровая камедь Е 412 и камедь тары Е 417.

По химическому строению гидроколлоиды подразделяют на три группы: кислые полисахариды с остатками уроновой кислоты, кислые полисахариды с остатками серной кислоты и нейтральные полисаха­риды. В качестве загустителей применяются кислые гидроколлоиды с остатками уроновой кислоты (например, трагакант Е413 и гуммиара­бик Е414), а также нейтральные соединения (например, камедь бобов рожкового дерева Е 410 и гуар Е 412). Кислые полисахариды с остатка­ми серной кислоты применяются в качестве гелеобразователей (на­пример, агар Е406 и каррагинан Е407).

Эффективность действия гидроколлоидов определяется не только структурными особенностями их молекул (длиной цепи, степенью разветвления, природой мономерных звеньев и функциональных групп и их расположением в молекуле, наличием гликозидных связей), но и составом пищевого продукта, способом его получения и условия­ми хранения. На растворение и диспергирование гидроколлоидов влияют размер и форма их частиц, удельная поверхность, грануломет­рический состав. Большое значение имеет способ приготовления рас­твора (дисперсии): интенсивность и время перемешивания, темпера­тура, значение рН, присутствие электролитов, минеральных веществ и гидратируемых веществ (например, сахара), возможность образования комплексов с другими имеющимися в системе соединениями, процес­сы распада, вызываемые ферментами или микроорганизмами. Есть за­густители, которые могут образовывать ассоциаты с другими высоко­молекулярными компонентами пищевого продукта, что вызывает за­метное возрастание вязкости.

Поведение нейтральных полисахаридов, в отличие от полиэлектро­литов, практически не зависит от изменения рН среды и концентра­ции соли.


Наиболее часто встречается следующий механизм загущения. Мо­лекулы загустителя свёрнуты в клубки. Попадая в воду или в среду, со­держащую свободную воду (например, в напиток или в смесь для мо­роженого), клубок молекулы загустителя благодаря сольватации рас­кручивается, подвижность молекул воды ограничивается, а вязкость раствора возрастает (табл. 3.2).

Свойства загустителей, особенно нейтральных полисахаридов, можно менять путём физической (например, термической) обработки или путём химической модификации (например, введением в молеку­лу нейтральных или ионных заместителей). Путём химической или физической модификации крахмала можно добиться: понижения или повышения температуры его клейстеризации; понижения или повы­шения вязкости клейстера; повышения растворимости в холодной во­де; появления эмульгирующих свойств; снижения склонности к ретро-градации; устойчивости к синерезису, кислотам, высоким температу­рам, циклам оттаивания-замораживания. При этом получают разные виды модифицированных крахмалов (Е1400... 1405, Е1410...1414, Е1420...1423, Е1440, Е1442, Е1443, Е1450, Е1451). К модифицирован­ным полисахаридам относят сложные эфиры целлюлозы Е 461...467.

Гели (желе) представляют собой дисперсные системы, по крайней мере двухкомпонентные, состоящие из дисперсной фазы, распреде­лённой в дисперсионной среде. Дисперсионной средой является жид­кость. В пищевых системах это обычно вода, и поэтому гель носит на­звание гидрогеля. Дисперсной фазой является гелеобразователь, поли­мерные цепи которого образуют поперечно сшитую сетку и не облада­ют той подвижностью, которая есть у молекул загустителя в высоковязких растворах. Вода в такой системе физически связана и тоже теряет подвижность. Следствием этого является изменение кон­систенции пищевого продукта. Структура и прочность пищевых гелей, полученных с использованием разных гелеобразователей, могут силь­но различаться.