Смекни!
smekni.com

Математика как языковая игра (стр. 2 из 2)

Следует отметить, что рассмотрение Витгенштейном оснований математики демонстрирует методологический потенциал понятия «языковой игры», поскольку именно в этом цикле заметок Витгенштейн применяет свой метод не просто для анализа естественного языка, как это имело место в «Философских исследованиях», но для анализа вполне определенной сферы практической деятельности, определенной как математическая наука. Этот факт делает данный метод применимым и при анализе как других областей научного знания, так и при анализе других практических сфер человеческой деятельности в силу того, что основой всех видов деятельности является деятельность коммуникативная.

Рассмотрим еще один вывод, к которому пришел Витгенштейн при анализе математического знания. Он отказывает математике (математике, как универсальному языковому средству науки) в познавательной способности вообще, в силу того, что будучи языковой игрой та не способна на познавательную деятельность в общепринятом смысле (поскольку, по мнению Витгенштейна, математик не открывает, но изобретает). Но при этом возникает естественный вопрос о том, как в таком случае возможно развитие математики вообще. По мнению Витгенштейна, среди форм существования математического знания наличествуют определенные ресурсы, позволяющие его расширять. Одной из таких форм является математическое доказательство, на данную интерпретацию которого обратил внимание и А.Ф. Грязнов. Вот как он об этом пишет [1, с.151]: «самое важное, на взгляд Витгенштейна, в том, как именно доказательство конструирует то или иное математическое предложение. Оно заставляет одну структуру порождать другую. В силу этого доказательство выступает как определенный инструмент языка». Данный фрагмент является для нас показательным в том аспекте, что для А.Ф. Грязнова показалась существенной способность одной языковой структуры порождать формы других структур. Именно это является характерным для функционирования такой структуры существования знания, как дискурс в том понимании, в котором его чаще всего принято рассматривать. Более того, мы рискнем предположить, что доказательство является одной из возможных форм высказывания в том смысле, в каком понимал его Фуко в работе «Археология знания» (как составляющую дискурса). Заметим: не какое-либо конкретное доказательство, входящее в тот или иной математический текст, а доказательство как одна из форм существования математического текста. Данное предположение открывает следующие перспективы исследований: возможно предположить, что закономерности, установленные Витгенштейном при анализе математики как языковой игры, позволяют рассматривать ее как некую дискурсивную практику в том смысле, что закономерности ее построения определяются законами функционирования дискурса, а концепция «языковых игр» нашла свое развитие в концепции дискурса М. Фуко.

Список литературы

Грязнов А.Ф. Эволюция философских взглядов Л. Витгенштейна. Критический анализ. М., 1985.

Грязнов А.Ф. Л. Витгенштейн о методологических вопросах математического знания // Вестник Московского университета. Серия 7. Философия. №4. 1997.